SHARP SERVICE MANUAL

COMMERCIAL

In interests of user-safety the oven should be restored to its original condition and only parts identical to those specified should be used.

TABLE OF CONTENTS

Page
CAUTION, MICROWAVE RADIATION .. INSIDE FRONT COVER
WARNING
1
SERVICING ... 2
PRODUCT SPECIFICATIONS ... 5
GENERAL INFORMATION .. 5
APPEARANCE VIEW ... 6
OPERATION SEQUENCE ... 7
FUNCTION OF IMPORTANT COMPONENTS ... 9
TROUBLESHOOTING GUIDE .. 10
TEST PROCEDURE ... 12
TOUCH CONTROL PANEL ASSEMBLY .. 18
COMPONENT REPLACEMENT AND ADJUSTMENT PROCEDURE ... 26
MICROWAVE MEASUREMENT ... 33
TEST DATA AT A GLANCE ... 34
WIRING DIAGRAM .. 35
PICTORIAL DIAGRAM .. 37
CONTROL PANEL CIRCUIT .. 38
PRINTED WIRING BOARD .. 39
PARTS LIST ... 40

CAUTION
 MICROWAVE RADIATION

Personnel should not be exposed to the microwave energy which may radiate from the magnetron or other microwave generating devices if it is improperly used or connected. All input and output microwave connections, waveguides, flanges and gaskets must be secured.
Never operate the device without a microwave energy absorbing load attached.
Never look into an open waveguide or antenna while the device is energized.

VARNING
 MICKROVAGSSTRALING

Personal får inte utsättas för mikrovågsenergi som kan ustrala från magnetronen eller andre mikrovågsalstrande anordningar om dessa är felanslutna eller används på fel sätt. Alla in-och utgångsanslutningar för mikrovågor, vagledare, flänsar och packningar måste vara fast anslutna.
Mikrovågsgeneratorn får inte arbeta utan att absorberande belastning är ansluten. Titta aldrig in i ën öppen vågledare eller antenn när mikrovågsgeneratorn är påkopplad eller laddad.

VAROITUS MIKROAALTOSÄTELYÄ

Käyttäjä ei saa joutua alttiiksi mikroaaltoenergialle, jota voi säteillä magnetronista tai muusta mikroaaltoja kehittävästä laitteesta, jos sitä käytetään tai jos se kytketään väärin. Kaikkien mikroaaltoliitäntöjen sekä syöttö-että ulostulopuolella, aaltoputkien laippojen ja tiivisteiden tulee olla varmistettuja.
Mikroaaltouunnia ei koskaan saa käyttää ilman kuormaa jossa mikroaaltoenergiaa kuluu. Avoimeen aaltoputkeen tai antenniin ei koskaan saa katsoa virran ollessa kytkettynä.

ADVARSEL
 MIKROBØLGESTRÅLING

Personell må ikke utsettes for mikrobølge-energi som kan utståles fra magnetronen eller andre mikrobølge-generende deler dersom apparatet feilbetjenes eller blir feiltikoplet.
Alle inn-og ut-tilkoplinger i forbindelse med mikrobølge-strålingen, bølgeledere, flenser og tetningsringer/pakninger må festes ordentlig.
Aldri bruk apparatet med mindre en mikrobålge-absorberende last er plassert i ovnsrommet.
Aldri se direkte inn i en åpen bølgeleder eller antenne imens apparatet er strømførende.

ADVARSEL MIKROBØLGEBESTRÄLING

Man bør ikke udsætte sig for mikrobølgebestråling fra magnetronen eller andre mikrobølgefrembringende anordninger, hvilket kan ske hvis apparatet er forkert tilsluttet eller bruges forkert. Alle mikrobølgeindgange og-udgange, bølgeledere, flanger og tætningsstrimler må være forsvarligt udført.
Anvend aldrig ovnen uden en mikrobølgesabsorberende anordning. Se aldrig ind i en åben bølgeleder eller antenne, mens ovnen er i brug.

SERVICE MANUAL

SHARP

COMMERCIAL MICROWAVE OVEN

R-25AT

GENERAL IMPORTANT INFORMATION

This Manual has been prepared to provide Sharp Corp. Service engineers with Operation and Service Information.

It is recommended that service engineers carefully study the entire text of this manual, so they will be qualified to render satisfactory customer service.

CAUTION
 MICROWAVE RADIATION
 DO NOT BECOME EXPOSED TO RADIATION FROM THE MICROWAVE GENERATOR OR OTHER PARTS THAT CONDUCT MICROWAVE ENERGY.

Note:	WARNING The parts marked "*" are used in voltage more than 250V. (Parts List)
Anm:	Delar märket med "*" har en spänning överstigande 250V.
Huom:	Huolto-ohjeeseen merkitty "tähdella" osat joissa jännite on yli 250 V.
Bemerk:	Deler som er merket "asterisk" er utsatt for spenninger over 250 V til jord.
Bemærk:	"Dele mærket med stjerne benyttes med højere spænding end 250 volt.

WARNING

Never operate the oven until the following points are ensured.
(A) The door is tightly closed.
(B) The door brackets and hinges are not defective.
(C) The door packing is not damaged.
(D) The door is not deformed or warped.
(E) There is not any other visible damage with the oven.

Servicing and repair work must be carried out only by trained service engineers.
All the parts marked "*" on parts list are used at voltage more than 250V.

Removal of the outer wrap gives access to potential above 250 V .
All the parts marked " Δ " on the parts list may cause undue microwave exposure, by themselves, or when they are damaged, loosened or removed.

SERVICING

PRODUCT SPECIFICATIONS

GENERAL INFORMATION

APPEARANCE VIEW

OPERATING SEQUENCE

FUNCTION OF IMPORTANT

 COMPONENTS
TROUBLESHOOTING GUIDE

 AND TEST PROCEDURETOUCH CONTROL PANEL

COMPONENT REPLACEMENT AND ADJUSTMENT PROCEDURE

MICROWAVE MEASUREMENT

TEST DATA AT A GLANCE

WIRING DIAGRAM

PARTS LIST

SERVICING

WARNING TO SERVICE PERSONNEL

Microwave ovens contain circuitry capable of producing very high voltage and current, contact with following parts will result in electrocution. High voltage capacitor, High voltage transformer, Magnetron, High voltage rectifier assembly, High voltage fuses, High voltage harness.

REMEMBER TO CHECK 3D

1) Disconnect the supply.
2) Door opened, and wedged open.
3) Discharge two high voltage capacitors.

WARNING: AGAINST THE CHARGE OF THE TWO HIGH-VOLTAGE CAPACITORS

The two high-voltage capacitors remains charged about 60 seconds after the oven has been switched off. Wait for 60 seconds and then short-circuit the connection of the two high-voltage capacitors (that is, of the connecting lead of the high-voltage rectifier) against the chassis with the use of an insulated screwdriver.

Sharp recommend that wherever possible fault-finding is carried out with the supply disconnected. It may in, some cases, be necessary to connect the supply after the outer case has been removed, in this event carry out 3D checks and then disconnect the leads to the primary of the two High voltage transformers. Ensure that these leads remain isolated from other components and the oven chassis. (Use insulation tape if necessary.) When the testing is completed carry out 3D checks and reconnect the leads to the primary of the two High voltage transformers.

REMEMBER TO CHECK 4R

1) Reconnect all leads removed from components during testing.
2) Replace the outer case (cabinet).
3) Reconnect the supply.
4) Run the oven. Check all functions.

Microwave ovens should not be run empty. To test for the presence of microwave energy within a cavity, place a cup of cold water on the oven turntable, close the door and set the power to HIGH and set the microwave timer for one (1) minute. When the one minute has elapsed (timer at zero) carefully check that the water is now hot. If the water remains cold carry out 3D checks and re-examine the connections to the component being tested.

When all service work is completed, and the oven is fully assembled, the microwave power output should be checked and a microwave leakage test should be carried out.

Magnetronovens bevatten circuits die een zeer hoge spanning en stroom kunnen voortbrengen. Contact met de volgende onderdelen kan elektrocutie tot gevolg hebben.
Hoogspanningscondensator, hoogspanningstransformator, magnetron, hoogspanningsgelijkrichter, hoogspannings kabelboom.

VERGEET DE VOLGENDE 3 STAPPEN NIET

1) Haal de stekker uit het stopcontact.
2) Open de deur en zorg ervoor dat hij niet dicht kan vallen.
3) Ontlaad de hoogspanningscondensator.

PAS OP VOOR DE ELECTRISCHE LADING VAN DE HOOGSPANNINGSCONDENSATOR

De hoogspanningscondensator blijft nog ongeveer 60 seconden lang opgeladen, nadat de oven is uitgeschakeld. Wacht 60 seconden voordat u de verbinding van de hoogspannings-condensator (m.a.w. de verbindingsdraad van de hoogspanningsgelijkrichter) met een geïsoleerde schroevedraaier kortsluit tegen het chassis.

Sharp beveelt ten sterkste aan dat, voor zover mogelijk, defecten worden opgespoord wanneer de stekker uit het stopcontact is gehaald. Soms is het nodig om de stroomtoevoer weer tot stand te brengen nadat de buitenmantel verwijderd is. Herhaal dan de bovengenoemde 3 stappen en haal de electrische draden uit de primaire zijde van de vermogenstransformator. Zorg ervoor dat deze draden geïsoleerd blijven van andere elementen en van het chassis van de oven. (Gebruik zo nodig isolatieband.) Wanneer de test is uitgevoerd, herhaalt u de bovenstaande 3 stappen en verbindt u de electrische draden weer aan de primaire zijde van de vermogenstransformator.

VERGEET DE VOLGENDE 4 STAPPEN NIET

1) Sluit de draden weer aan diezijn losgehaald voor de test.
2) Plaats de buitenmantel weer om het toestel heen (kabinet).
3) Stop de stekker weer in het stopcontact.
4) Zet de oven aan. Controleer alle functies.

Magnetronovens mogen niet leeg aangezet worden. Om te controleren of er microgolf-energie binnen de oven wordt geproduceerd, plaatst u een mok met koud water op de draaitafel van de oven, sluit de deur, zet de oven op HIGH en stelt de klok van de magnetron in op twee (2) minuten. Wanneer de twee minuten voorbij zijn (klok staat op nul), controleert u voorzichtig of het water heet is. Indien het water nog steeds koud is, herhaalt u de allereerste drie stappen en controleer nogmaals de aansluitingen naar de geteste onderdelen.

Wanneer alle reparaties zijn uitgevoerd en de oven weer in elkaar is gezet, moet de het magnetronvermogen worden gecontroleerd en moet worden gecontroleerd of er geen microgolflekkage is.

Los hornos de microondas contienen circuitos eléctricos capaces de producir voltajes de alta tensión y descargas eléctricas. Para evitar el riesgo de electrocución, absténgase de tocar los siguientes componentes: condensador de alta tensión, transformador de alta tensión, magnetrón, dispositivo del rectificador de alta tensión y arnés de alta tensión.

RECUERDE LA COMPROBACION 3D

1) Desconecte la alimentación.
2) Deje la puerta abierta y calzada.
3) Descargue el condensador de alto voltaje.

ADVERTENCIA SOBRE LA CARGA DEL CONDENSADOR DE ALTO VOLTAJE

El condensador de alto voltaje permanece cargado unos 60 segundos después de haber apagado el horno. Espere 60 segundos y luego ponga en cortocircuito la conexión del condensador de alto voltaje (esto es, del conductor de conexión del rectificador de alto voltaje) al chasis con un destornillador de mango aislado.

Se recomienda encarecidamente que siempre que sea posible la localización de fallos se realice con la alimentación desconectada. Puede ser que en algunos casos sea necesario conectar la alimentación después de haber retirado la carcasa exterior. En este caso, realice las comprobaciones 3D y luego desconecte los conductores del primario del transformador de alimentación. Asegúrese de que estos conductores permanezcan aislados de otros componentes y del chasis del horno. (Use cinta aislante si es necesario). Cuando termine la prueba efectúe las comprobaciones 3D y reconecte los conductores al primario del transformador de alimentación.

RECUERDE LA COMPROBACION 4C

1) Conecte todos los componentes desconectados de los componentes durante la prueba.
2) Coloque la carcasa exterior (cabina).
3) Conecte la alimentación.
4) Compruebe todas sus funciones despues de poner en marcha el horno.

Los hornos de microondas no deben funcionar vacíos. Para comprobar la presencia de energía de microondas dentro de una cavidad, coloque una taza de agua fría en el plato giratorio del horno, cierre la puerta y ponga la potencia en HIGH (alta) y coloque el temporizador en dos (2) minutos. Cuando transcurran los dos minutos (temporizador a cero) compruebe cuidadosamente que el agua se ha calentado. Si el agua permaneciese fría, efectúe las comprobaciones 3D y vuelva a examinar las conexiones de los componentes que han sido probados.

Cuando haya terminado la intervención en el equipo y el horno haya sido ensamblado de nuevo completamente, deberá comprobar la potencia de salida de microondas y realizar una prueba de fugas de microondas.

Mikrovågsugnar innehåller kretsar som producerar mycket höga spänningar och strömmar.
Kontakt med följande komponenter kan leda till dödsfall:
Högspänningskondensator, transformator, magnetron, högspännings likriktare, högspännings kablage.

KOM IHÅG ATT KONTROLLERA 3 STEG

1) Koppla från strömkällan.
2) Öppna dörren på glänt.
3) Ladda ur högspänningskondensatorn.

VARNING FÖR LADDNINGEN I HÖGSPÄNNINGSKONDENSATORN

Högspänningskondensatorn är laddad i 60 sekunder efter det att ugnen stängts av. Vänta 60 sekunder och korislut sedan kondensatoms anslutning (dvs anslutningen till högspänningslikriktaren) till chassiet med hjälp av en isolerad skruvmejsel.

Sharp rekommenderar att felsökning sker med strömmen fränkopplad. Ibland kan det var nödvändigt att koppla på strömmen efter det att höljet avlägsnats, utför da 3 Steg kontrollen och koppla sedan från ledarna till transformatorns primärsida. Se till att ledarna är isolerade från andra komponenter och chassiet. (Använd isoleringsband om det behövs). När Du testat färdigt utför Du 3 Steg kontrollen och ansluter ledningarna till transformatorns primärsida igen.

KOM IHÅG ATT KONTROLLERA 4 STEG

1) Anslut alla ledningar som använts vid testning
2) Sätt tillbaka ytterhöljet.
3) Anslut strömkällan på nytt.
4) Sätt på ugnen. Kontrollera alla funktioner.

Mikrovågsugnar får inte användas tomma. Kontrollera mikrovågsstrålningen i olika delar av ugnen genom att placera en kopp med kallt vatten på ugnens tallrik, stäng dörren, ställ in HIGH och ställ in 2 minuter på timern. När två minuter har gått (timem visar 0) kontrollerar du om vattnet är varmt. Om vattnet fortfarande är kallt utför Du 3 steg kontroller och kontrollerar anslutningarna till varje enskild komponent på nytt.

När all service är klar och ugnen ihopskruvad skall ugnens uteffekt och eventuellt mikrovågsläckage kontrolleras.

I forni a microonde contengono un circuito elettrico in grado di generare tensioni e correnti estremamente elevate. L'eventuale contatto con i seguenti componenti può causare la folgorazione:
condensatore ad alta tensione; trasformatore ad alta tensione; magnetron; rettificatore alta tensione; cablaggio ad alta tensione.

TRE OPERAZIONI IMPORTANTI PER INCOMINCIARE

1) Scollegare l'alimentazione elettrica.
2) Verificare che la porta sia bloccata in posizione aperta.
3) Scaricare il condensatore ad alta tensione.

ATTENZIONE AL CONDENSATORE AD ALTA TENSIONE: PUO ESSERE CARICO

Il condensatore ad alta tensione rimane carico per circa 60 secondi dopo lo spegnimento del forno. Occorre quindi spettare 60 secondi prima di cortocircuitare, utilizzando un cacciavite con impugnatura isolata, il collegamento del condensatore ad alta tensione (cioè del conduttore di collegamento del raddrizzatore ad alta tensione) sul telaio del forno.

Sharp raccomanda, nei limiti del possibile, che la ricerca dei guasti avvenga in assenza di alimentazione elettrica. In alcuni casi tuttavia, può essere necessario alimentare l'apparecchio dopo aver rimosso la scatola esterna. In questo caso eseguire i tre controlli sopra citati e quindi scollegare i connettori dal primario del trasformatore. Assicurarsi che tali connettori non vengano a contatto con altri componenti, ne con il telaio del forno (fare uso, se necessario, di nastro isolante). Al termine dell'intervento, eseguire nuovamente i tre controlli e ricollegare i conduttori al primario del trasformatore.

QUATTRO VERIFICHE IMPORTANTI DA NON DIMENTICARE

1) Ricollegare tutti i conduttori staccati dai vari componenti durante l'intervento.
2) Rimontare la scatola esterna.
3) Ripristinare l'alimentazione elettrica.
4) Rimettere in funzione il forno. Controllare tutte le funzioni.

I forni a microonde non devono mai funzionare a vuoto. Per verificare la presenza di energia da microonde all'interno di una cavitá, mettere una tazza di acqua fredda sul piatto rotante del forno, chiudere la porta, regolare la potenza su HIGH ed impostate il temporizzatore su due (2) minuti. Trascorsi i due minuti (temporizzatore a zero), controllare accuratamente che ora l'acqua sia calda. Se l'acqua è rimasta fredda, eseguire i tre controlli iniziali e verificare nuovamente i collegamenti del componente in questione.

Dopo aver portato a termine le operazioni di manutenzione e rimontato il forno, è necessario controllare la potenza delle microonde emesse ed eseguire un test per verificare che non vi sia alcuna dispersione.

PRODUCT DESCRIPTION

SPECIFICATION

ITEM	DESCRIPTION		
Power Requirements	230 Volts 50 Hertz Single phase, 3 wire earthed		
Power Comsumption	3.15 kW Approx. 15 A		
Power Output	2100 W nominal of RF microwave energy (measured by method of IEC 60705) Operating frequency 2450 MHz		
Case Dimensions	Width 510 mm Height 335 mm Depth 470 mm		
Cooking Cavity Dimensions	Width 330 mm Height 180 mm Depth 330 mm		
Control Complement	Touch Control System The combination of cooking time and microwave power The oven can be programmed a series of up to 3 cookling stages. The combination of microwave power and cooking time that can be input as folllows.		
	Cooking Sequence	Micrwave power level that can be used.	Cooking time that can be used.
	1 Stage only	0-40\%	Max. 30 minutes
		50-100\%	Max. 15 minutes
	2 or 3 Stage	0-40\%	Max. 30 minutes any stage
			Max. 30 minutes in total
		50-100\%	Max. 15 minutes any stage
			Max. 15 minutes in total
	Microwave Power level 100\% 90\% 80\% 70\% 60\% 50\% 40\% 30\% 20\% 10\% 0\%		
	MANUAL / REPEAT key, NUMBER keys		
	MICROWAVE POWER SETTING key		
	STOP / CLEAR key, START Key		
	DOUBLE QUANTITY key		
	EXPRESS DEFROST key, SET key		
	CHECK key, VOLUME key		
Set Weight	Approx. 33 kg		

GENERAL INFORMATION
WARNING
THIS APPLIANCE MUST BE EARTHED
IMPORTANT
THE WIRES IN THIS MAINS LEAD ARE COLOURED IN ACCORDANCE WITH THE FOLLOWING CODE:

GREEN-AND-YELLOW	$:$ EARTH
BLUE	$:$ NEUTRAL
BROWN	$:$ LIVE

OVEN

APPEARANCE VIEW

1. Control panel
2. Hole for safety door latches
3. Ceramic floor
4. Splash cover
5. Oven light
6. Air intake filter
7. Air intake openings
8. Oven cavity
9. Door seals and sealing surfaces
10. Door hinges
11. Oven door with see-through window
12. Door safety latches
13. Door handle.
14. Outer cabinet
15. Removable cover over oven light bulb
16. Air vent openings
17. Power supply cord

18 Mounting plate
19 Screw for mounting plate

DISPLAY AND INDICATORS

Check indicators after the oven starts to confirm the oven is operating as desired.

1. Cook indicator

This indicator shows cooking in progress.
2. Memory number indicator
3. Defrost indicator
4. Check mode indicator
5. Power level display
6. Digital display
7. Filter indicator
8. Double quantity mode indicator
9. 3rd. stage indicator
10. 2nd. stage indicator
11. 1st. stage indicator

OPERATING KEYS

12. DOUBLE QUANTITY key
13. EXPRESS DEFROST key
14. NUMBER keys
15. MANUAL/ REPEAT key
16. STOP/CLEAR key
17. MICROWAVE POWER SETTING key
18. START key
19. SET key
20. VOLUME key
21. CHECK key

AUTO TOUCH CONTROL PANEL

INSTALLATION INFORMATION

When this commercial microwave oven is installed near other commercial electrical appliances, connect a lead wire to each equivalent potential terminal with equipotential marking between them (insert a lead wire between a washer and an earth angle, and screw them), as shown in Fig. A-1, to make sure that they are at equivalent potential. If any lead wire is not connected between them, when person touch them he/she will get a electric shock.

Figure A-1

OPERATION SEQUENCE

Closing the door activates all door interlock switches (interlock switches and stop switch).

IMPORTANT

When the oven door is closed, the monitor switch contacts COM-NC must be open. When the microwave oven is plugged in a wall outlet (230 volts, 50 Hz), the line voltage is supplied to the control unit through the noise filter.

Figure 0-1 on page 35

1. The digital display shows \qquad

IDLE CONDITION

When the door is opened, the contacts of the interlock switches SW1+SW2 and stop switch SW5 open, initiating the following:

Figure 0-2 on page 35

1. A signal is input to the control unit energizing the coil of shut-off relay RY-1.
2. The shut-off relay RY-1 contacts close completing circuits to turn on the oven lamp, blower motor and antenna motors.
3. If the door remains open, 60 seconds later the control unit de-energizes shut-off relay RY-1 turning off the oven lamp, blower motor and antenna motors.
When the door is closed, the contacts of the interlock switches SW1+SW2 and stop switch SW5 close. With the closing of the stop switch SW5 contacts, an additional circuit is provided which will permit the operation of the oven when one of the touch pads is depressed. Since the control is enabled through the stop switch SW5, the door must be closed before the touch pads will be effective. When the door is closed, a full 60 second IDLE condition is always provided for selecting and pressing the desired touch pads. A 60 second IDLE condition will also follow the end of each cook cycle.

MICROWAVE COOKING CONDITION

Touch MANUAL/ REPEAT key and enter a desired cooking time with the touching NUMBER key. And then touch START key.

NOTE: The programme and the check are canceled when any keys are not touched for more than 3 minutes during programming.
Function sequence Figure 0-3 on page 36

CONNECTED COMPONENTS	RELAY
Oven lamp/ Blower motor/ Antenna motors	RY1
High voltage transformer T1	RY3
High voltage transformer T2	RY4

1. The line voltage is supplied to the primary winding of the two high voltage transformers. The voltage is converted to about 3.3 volts A.C. output on the filament winding and high voltage of approximately 2000 volts A.C. on the secondary winding.
2. The filament winding voltage (3.3 volts) heats the magnetron filament and the high voltage (2000 volts) is sent to the voltage doubling circuit, where it is doubled to negative voltage of approximately 4000 volts D.C..
3. The 2450 MHz microwave energy produced in the magnetron generates a wave length of 12.24 cm . This energy is channelled through the waveguide (transport channel) into the oven cavity, where the food is placed to be cooked.
4. When the cooking time is up, a signal tone is heard and the relays $\underline{R Y 3+R Y 4}$ go back to their home position. The circuits to the high voltage transformers $11+\mathrm{T} 2$. The relay RY1 remains and oven lamp, blower motor and antenna motors work for 1 minute.
5. When the door is opened during a cook cycle, the switches come to the following condition.

		CONDITION	
		DURING	DOOR OPEN
SWITCH	CONTACT	COOKING	(NO COOKING)
Interlock switches	COM-NO	Closed	Open
Monitor switches	COM-NC	Open	Closed
Stop switch	COM-NO	Closed	Open

The circuits to the high voltage transformers $\mathrm{T} 1+\mathrm{T} 2$ are cut off when the interlock and stop switches SW1+SW2+SW5 are made open. The blower motor BM, antenna motors and oven lamp remains on even if the oven door is opened after the cooking cycle has been interrupted, because the relay RY1 stays closed. Shown in the display is the remaining time, but the program is cancelled if the oven is not started within 1 minute.

6. MONITOR SWITCH CIRCUIT

The monitor switches SW3+SW4 are mechanically controlled by oven door, and monitors the operation of the interlock switches SW1+SW2.
$6-1$. When the oven door is opened during or after the cycle of a cooking program, the interlock switches SW1+SW2 and stop switches SW5 must open their contacts first. After that the contacts (COM-NC) of the monitor switches SW3+SW4 can be closed.
$6-2$. When the oven door is closed, the contacts (COMNC) of the monitor switches SW3+SW4 must be opened first. After that the contacts (COM-NO) of the interlock switches SW1+SW2 and stop switch SW5 must be closed.
6-3. When the oven door is opened and the contacts of the interlock switch SW1 (or SW2) remain closed, remains closed, the fuse F1 F10A (or F2 F10A) will blow, because the monitor switch SW3 (or SW4) is closed and a short circuit is caused.

MICROWAVE VARIABLE COOKING

When the microwave oven is preset for variable cooking power, the line voltage is supplied to the high voltage transformers $\overline{T 1+T 2}$ intermittently within a 48 second time base through the contacts of the relays RY3+RY4.
The following levels of microwaves power are given.

NOTE: The ON/OFF time ratio does not exactly correspond to the percentage of microwave power, because approx. 3 seconds are needed for heating up the magnetron filament.

TWO MAGNETRON OPERATION SYSTEM

Two magnetrons MG1+MG2 are equipped in order to get higher microwave power output. The primary windings of the high voltage transformers $\mathrm{T} 1+\mathrm{T} 2$ are connected so that each magnetron can be oscillated alternatively according to the frequency of the power supply. Refer to the Figure $\mathrm{B}-1$ and $\mathrm{B}-2$.

Figure B-1. High Voltage Circuit

Figure B-2. Operation of Magnetron

FUNCTION OF IMPORTANT COMPONENTS

DOOR OPEN MECHANISM

1. The door release lever is pulled.
2. The upper latch head is lifted up by the linked door release lever.
3. The head lever is lifted up by the door release lever.
4. The joint lever is lifted up by the head lever.
5. The lower latch head is lifted up by the joint lever.
6. Now both latch heads are lifted up, so they can be released from the latch hook.
7. Now the door can be opened.

Figure D-1. Door Open Mechanism

INTERLOCK SWITCHES SW1, SW2 AND STOP SWITCH SW5

1. When the oven door is closed, the contacts COM-NO must be closed.
2. When the oven door is opened, the contacts $\mathrm{COM}-\mathrm{NO}$ must be opened.

MONITOR SWITCHES SW3, SW4

The monitor switches SW3, SW4 are activated (the contacts opened) the upper latch head and switch lever A while the door is closed. The switch SW3 (or SW4) is intended to render the oven inoperative by means of blowing the fuse F1 F10A (or F2 F10A) when the contacts of the interlock switch SW1 (or SW2) fail to open when the door is opened.

Function

1. When the door is opened, the monitor switches SW3 + SW4 contacts close (to the ON condition) due to their being normally closed. At this time the interlock switch SW1+SW2 are in the OFF condition (contacts open) due to their being normally open contact switches.
2. As the door goes to a closed position, the monitor switches SW3+SW4 contacts are opened and interlock switch SW1+SW2 contacts are closed (On opening the door, each of these switches operate inversely.)
3. If the door is opened and the interlock switch SW1 (or SW2) contacts fail to open, the fuse F1 F10A (or F2 F10A) blows simultaneously with closing of the monitor switch SW3 (or SW4) contacts.

CAUTION:BEFORE REPLACING A BLOWN FUSE F1 F10A (OR F2 F10A) TEST THE INTERLOCK SWITCH SW1 (OR SW2) AND MONITOR SWITCHE SW3 (OR SW4) FOR PROPER OPERATION. (REFER TO CHAPTER "TEST PROCEDURE").

NOISE FILTER

The noise filter assembly prevents radio frequency interference that might flow back in the power circuit.

FUSES F1, F2 F10A 250V

1. If the wire harness or electrical components are shortcircuited, this fuse blows to prevent an electric shock or fire hazard.
2. The fuse F1 F10A (or F2 F10A) also blows when interlock switch SW1 (or SW2) remains closed with the oven door open and when the monitor switches SW3 (or SW4) closes.

WEAK POINT F3

If the wire harness or electrical components make a shortcircuit, this weak point F3 blows to prevent an electric shock or fire hazard.

HIGH VOLTAGE FUSE(S) F4, F5

The high voltage fuse blows when the high voltage rectifier or the magnetron is shorted.

MAGNETRON TEMPERATURE FUSES TF1, TF2

The temperature fuses TF1, TF2 located on the top of the upper and lower waveguide, are designed to prevent damage to the magnetrons MG1, MG2. If an over heated condition develops in the tube due to blower motor failure, obstructed air ducts, dirty or blocked air intake, etc., the circuit to the magnetrons are interrupted. Under normal operation, the temperature fuses remains closed. However, when abnormally high temperatures are generated within the magnetrons, the temperature fuses will open at $150^{\circ} \mathrm{C}$ causing the microwave energy to stop. The defective temperature fuses must be replaced with new rated ones.

EXHAUST TEMPERATURE FUSE TF3

The temperature fuse TF3, located on the side of the exhaust duct assembly, is designed to prevent damage to the oven by fire. If the food load is overcooked, by either error in cook time or defect in the control unit, the temperature fuse will open. Under normal operation, the oven temperature fuse remains closed. However, when abnormally high temperatures are generated within the oven cavity, the oven temperature fuse will open at $120^{\circ} \mathrm{C}$, causing the oven to shut down. The defective temperature fuse must be replaced with new rated one.

EXHAUST OVEN THERMISTOR TH3

The thermistor is a negative temperature coefficient type. The temperature in the exhaust duct is detected through the resistance of the thermistor.
If the temperature is high, the control panel will display "EE7" and the oven will stop to avoid overheating and

catching fire.

If the thermistor is open, the control panel will display "EE6" and the oven will stop.

MAGNETRON THERMISTORS TH1, TH2

The thermistor is a negative temperature coefficient type. The air temperature around the magnetron is detected through the resistance of the thermistor.
If the temperature is high, the control panel will display "EE17" and the oven will stop to protect the lower magnetron against overheat.
If the magnetron thermistor is open, the control panel will display "EE16" and the oven will stop.
If the magnetron thermistor is short, the control panel will display "EE19" and the oven will stop.

BLOWER MOTOR BM

The blower motor BM drives a blade which draws external cool air into the oven. This cool air is directed through the air vanes surrounding the magnetrons and cools the magnetrons. This air is channelled through the oven cavity to remove steam and vapours given off from the heating foods. It is then exhausted through the exhausting air vents at the oven cavity.

ANTENNA MOTORS SM

The upper and lower antenna motors $\underline{\text { SM }}$ drive stirrer antennas.

OVEN LAMP OL

The oven cavity light illuminates the interior of the oven so that food being cooked can be examined visually through the door window without having to open the door. The oven lamp is on during the cooking cycle and idle condition.

TROUBLESHOOTING GUIDE

When troubleshooting the microwave oven, it is helpful to follow the Sequence of Operation in performing the checks. Many of the possible causes of trouble will require that a specific test be performed. These tests are given a procedure letter which will be found in the "Test Procedure"section.
IMPORTANT: If the oven becomes inoperative because of a blown fuse F1 F10A (or F2 F10A) in the interlock switch SW1 (or SW2) - monitor switches SW3 (or SW4), check the interlock switch SW1 (or SW2) and monitor switches SW3 (or SW4) before replacing the fuse F1 F10A (or F2 F10A).

NEVER TOUCH ANY PART IN THE CIRCUIT WITH YOUR HAND OR AN INSULATED TOOL WHILE THE OVEN IS IN OPERATION.

CARRY OUT 3D CHECKS.

Isolate the magnetron from high voltage circuit by removing all leads connected to filament terminal.
To test for an open circuit filament use an ohmmeter to make a continuity test between the magnetron filament terminals, the meter should show a reading of less than 1 ohm.

To test for short circuit filament to anode condition, connect ohmmeter between one of the filament terminals and the case of the magnetron (ground). This test should be indicated an infinite resistance. If a low or zero resistance reading is obtained then the magnetron should be replaced.

MICROWAVE OUTPUT POWER (1 litre water load)

The following test procedure should be carried out with the microwave oven in a fully assembled condition (outer case fitted). Microwave output power from the magnetron can be measured by way of IEC 60705, i.e. it is measured by how much power the water load can absorb. To measure the microwave output power in the microwave oven, the relation of calorie and watt is used. When $\mathrm{P}(\mathrm{W})$ heating works for t (second), approximately $\mathrm{P} \times \mathrm{t} / 4.187$ calorie is generated. On the other hand, if the temperature of the water with $\mathrm{V}(\mathrm{ml})$ rises $\Delta \mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ during this microwave heating period, the calorie of the water is $\mathrm{Vx} \Delta \mathrm{T}$.

The formula is as follows;

$$
\mathrm{P} \times \mathrm{t} / 4.187=\mathrm{V} \times \Delta \mathrm{T}+0.55 \times \mathrm{mc}(\mathrm{~T} 2-\mathrm{TO})
$$

Our condition for water load is as follows:
Room temperature (TO) around $20^{\circ} \mathrm{C}$
Water load 1000 g
Power supply Voltage \qquad Rated voltage

Heating time 20 sec. Mass of container (mc) $10 \pm 1^{\circ} \mathrm{C}$
\qquad Final temperature $\mathrm{P}=210 \times \Delta \mathrm{T}+0.55 \times \mathrm{mc}(\mathrm{T} 2-\mathrm{T} 0) / 20$

Measuring condition:

1. Container

The water container must be a cylindrical borosilicate glass vessel having a maximum material thickness of 3 mm and an outside diameter of approximately 190 mm .
2. Temperature of the oven and vessel

The oven and the empty vessel are at ambient temperature prior to the start the test.
3. Temperature of the water

The initial temperature of the water is $(10 \pm 1)^{\circ} \mathrm{C}$.
4. Select the initial and final water temperature so that the maximum difference between the final water temperature and the ambient temperature is $5^{\circ} \mathrm{C}$.
5. Select stirring devices and measuring instruments in order to minimize addition or removal of heat.
6. The graduation of the thermometer must be scaled by $0.1^{\circ} \mathrm{C}$ at minimum and be an accurate thermometer.
7. The water load must be $(1000 \pm 5) \mathrm{g}$.
8. " t " is measured while the microwave generator is operating at full power. Magnetron filament heatup time is not included.

NOTE: The operation time of the microwave oven is " $\mathrm{t}+3$ " sec. (3 sec. is magnetron filament heat-up time.)
Measuring method:

1. Measure the initial temperature of the water before the water is added to the vessel.
(Example: The initial temperature $\mathrm{T} 1=11^{\circ} \mathrm{C}$)
2. Add the 1 litre water to the vessel.
3. Place the load on the centre of the shelf.
4. Operate the microwave oven at HIGH until the temperature of the water rises by a value $\Delta \mathrm{T}$ of $(10 \pm 2) K$.
5. Stir the water to equalize temperature throughout the vessel.
6. Measure the final water temperature. (Example: The final temperature $\mathrm{T} 2=21^{\circ} \mathrm{C}$)
7. Calculate the microwave power output \underline{P} in watts from above formula.

PROCEDURE

 LETTER
COMPONENT TEST

Room temperature	$\mathrm{TO}=21^{\circ} \mathrm{C}$
Initial temperature	$\mathrm{T} 1=11^{\circ} \mathrm{C}$
Temperature after $(20+3)=23 \mathrm{sec}$	$\mathrm{T} 2=21^{\circ} \mathrm{C}$
Temperature difference Cold-Warm.	$\Delta \mathrm{T} 1=10^{\circ} \mathrm{C}$
Measured output power	
The equation is " $\mathrm{P}=210 \times \Delta \mathrm{T}$ "	2100 Watts

JUDGMENT: The measured output power should be within the range of $\pm 15 \%$ of the rated output power.

CAUTION: $1^{\circ} \mathrm{C}$ CORRESPONDS TO 210 WATTS. REPEAT MEASUREMENT IF THE POWER IS INSUFFICIENT.

B HIGH VOLTAGE TRANSFORMER TEST

WARNING: High voltage and large currents are present at the secondary winding and filament winding of the high voltage transformer. It is very dangerous to work near this part when the oven is on. NEVER make any voltage measurements of the high-voltage circuits, including the magnetron filament.

CARRY OUT 3D CHECKS.

Disconnect the leads to the primary winding of the high voltage transformer. Disconnect the filament and secondary winding connections from the rest of the HV circuitry. Using an ohmmeter, set on a low range, it is possible to check the continuity of all three windings. The following readings should be obtained:-
a. Primary winding
b. Secondary winding
approximately 1.2Ω
c. Filament winding
approximately 75Ω
less than 1Ω

If the readings obtained are not stated as above, then the high voltage transformer is probably faulty and should be replaced.
CARRY OUT 4R CHECKS.

C HIGH VOLTAGE RECTIFIER ASSEMBLY TEST

CARRY OUT 3D CHECKS.

Isolate the high voltage rectifier assembly from the HV circuit. The high voltage rectifier can be tested using an ohmmeter set to its highest range. Connect the ohmmeter across the terminal $\mathrm{B}+\mathrm{C}$ of the high voltage rectifier and note the reading obtained. Reverse the meter leads and note this second reading. The normal resistance is infinite in one direction and more than $100 \mathrm{k} \Omega$ in the other direction.
CARRY OUT 4R CHECKS.

NOTE: FOR MEASUREMENT OF THE RESISTANCE OF THE RECTIFIER, THE BATTERIES OF THE MEASURING INSTRUMENT MUST HAVE A VOLTAGE AT LEAST 6 VOLTS, BECAUSE OTHERWISE AN INFINITE RESISTANCE MIGHT BE SHOWN IN BOTH DIRECTIONS.

PROCEDURE

 LETTER
COMPONENT TEST

D HIGH VOLTAGE CAPACITOR TEST
CARRY OUT 3D CHECKS.
A. Isolate the high voltage capacitor from the circuit.
B. Continuity check must be carried out with measuring instrument which is set to the highest resistance range.
C. A normal capacitor shows continuity for a short time (kick) and then a resistance of about $10 \mathrm{M} \Omega$ after it has been charged.
D. A short-circuited capacitor shows continuity all the time.
E. An open capacitor constantly shows a resistance about $10 \mathrm{M} \Omega$ because of its internal $10 \mathrm{M} \Omega$ resistance.
F. When the internal wire is opened in the high voltage capacitor shows an infinite resistance.
G. The resistance across all the terminals and the chassis must be infinite when the capacitor is normal.
If incorrect reading are obtained, the high voltage capacitor must be replaced.
CARRY OUT 4R CHECKS.
E SWITCH TEST
CARRY OUT 3D CHECKS.
Isolate the switch to be tested and using an ohmmeter check between the terminals as described in the following table.

Table: Terminal Connection of Switch

Plunger Operation	COM to NO	COM to NC	COM; Common terminal,
Released	Open circuit	Short circuit	
Depressed	Short circuit	Open circuit	NC; Normally close terminal

If incorrect readings are obtained, make the necessary switch adjustment or replace the switch.
CARRY OUT 4R CHECKS.
F WEAK POINT F3 TEST
CARRY OUT 3D CHECKS.
If the weak point $\underline{F 3}$ is blown, there could be a shorts or grounds in electrical parts or wire harness. Check them and replace the defective parts or repair the wire harness.
CARRY OUT 4R CHECKS.
CAUTION: Only replace weak point F3 with the correct value replacement.

CARRY OUT 3D CHECKS.
If the fuse F1 F10A (or F2 F10A) is blown when the door is opened, check the interlock switch SW1 (or SW2) and monitor switch SW3 (or SW4).
If thefuse F1 F10A (or F2 F10A) is blown by incorrect door switching replace the defective switch(s) and the fuse F1 F10A (or F2 F10A).

CARRY OUT 4R CHECKS.
CAUTION: Only replace fuse F1 F10A (or F2 F10A) with the correct value replacement.

H TEMPERATURE FUSE TF1, TF2, TF3 TEST

1. CARRY OUT 3D CHECKS.
2. A continuity check across the temperature fuse terminals should indicate a closed circuit unless the temperature of the temperature fuse reaches specfied temperature as shown below.

PROCEDURE

 LETTER
COMPONENT TEST

	Open temperature	Close temperature	Display or Condition	Check point

3. CARRY OUT 4R CHECKS.

CAUTION: IF THE temperature fuse INDICATES AN OPEN CIRCUIT AT ROOM TEMPERATURE, REPLACE temperature fuse.

I THERMISTOR TH1, TH2, TH3 TEST

1. CARRY OUT 3D CHECKS.
2. Follow the procedures below for each thermistor.

2-1. THERMISTOR TEST

Disconnect the connector of the thermistor from the switch harness. Measure the resistance of the magnetron thermistor with an ohmmeter. Connect the ohmmeter leads to the leads of the thermistor.

Resistance: \quad Approx. $500 \mathrm{k} \Omega-1 \mathrm{M} \Omega$
If the meter does not indicate above resistance, replace the thermistor.
3. CARRY OUT 4R CHECKS.

J MOTOR WINDING TEST
CARRY OUT 3D CHECKS.
Disconnect the leads from the motor. Using an ohmmeter, check the resistance between the two terminals.

Resistance of Blower motor should be approximately 60Ω.
Resistance of Antenna motor should be approximately $8.8 \mathrm{k} \Omega$.
If incorrect readings are obtained, replace the motor.
CARRY OUT 4R CHECKS.
K NOISE FILTER TEST
CARRY OUT 3D CHECKS.
Disconnect the leads from the terminals of noise filter. Using an ohmmeter, check between the terminals as described in the following table.

MEASURING POINT	INDICATION OF OHMMETER
Between N and L	Approx. $680 \mathrm{k} \Omega$
Between terminal N and WHIT	Short circuit
Between terminal L and BLK	Short circuit

If incorrect readings are absorbed, replace the noise filter.
CARRY OUT 4R CHECKS.

L HIGH VOLTAGE FUSE F4, F5 TEST

CARRY OUT 3D CHECKS.

If the high voltage fuse F4 (or F5) is blown, there could be a short in the high voltage rectifie or the magnetron MG1 (or MG2). Check them and replace the defective parts and the high voltage fuse F4 (or F5).

CARRY OUT 4R CHECKS.
CAUTION: Only replace high voltage fuse with the correct value replacement.

PROCEDURE

 LETTER COMPONENT TESTM TOUCH CONTROL PANEL ASSEMBLY TEST
The touch control panel consists of circuits including semiconductors such as LSI, IC, etc. Therefore, unlike conventional microwave ovens, proper maintenance cannot be performed with only a voltmeter and ohmmeter. In this service manual, the touch control panel assembly is divided into two units, Control Unit and Key Unit, troubleshooting by unit replacement is described according to the symptoms indicated.

1. Key Unit Note : Check key unit ribbon connection before replacement.

The following symptoms indicate a defective key unit. Replace the key unit.
a) When touching the pads, a certain pad produces no signal at all.
b) When touching the pads, sometimes a pad produces no signal.
2. Control Unit

The following symptoms may indicate a defective control unit. Replacing the control unit. Before replacing the control unit, perform the key unit test (Procedure N) to determine if control unit is faulty.
2-1 Programming problems.
a) When touching the pads, a certain group of pads do not produce a signal.

2-2 Display problems.
a) For a certain digit, all or some segments do not light up.
b) For a certain digit, brightness is low.
c) Only one indicator does not light.
d) The corresponding segments of all digits do not light up; or they continue to light up.
e) Wrong figure appears.
f) A certain group of indicators do not light up.
g) The figure of all digits flicker.

2-3 Other possible problems caused by defective control unit.
a) Buzzer does not sound or continues to sound.
b) Cooking is not possible.

CARRY OUT 3D CHECKS.
If the display fails to clear when the STOP/CLEAR pad is depressed, first verify the flat ribbon cable is making good contact, verify that the stop switch operates properly; that is the contacts are closed when the door is closed and open when the door is open. If the stop switch is good, disconnect the flat ribbon cable that connects the key unit to the control unit and make sure the stop switch is closed (either close the door or short the stop switch connector). Use the key unit matrix indicated on the control panel schematic and place a jumper wire between the pins that correspond to the STOP/CLEAR pad making momentary contact. If the control unit responds by clearing with a beep, the key unit is faulty and must be replaced. If the control unit does not respond, it is faulty and must be replaced. If a specific pad does not respond, the above method may be used (after clearing the control unit) to determine if the control unit or key pad is at fault.
CARRY OUT 4R CHECKS.

CARRY OUT 3D CHECKS.

Remove the outer case and check voltage between Pin Nos. 3 and 5 of the connector (A) on the control unit with an A.C. voltmeter. The meter should indicate 230 volts, if not check control unit circuity.

PROCEDURE

RY1, RY3 and RY4 Relay Test
These relays are operated by D.C. voltage.
Check voltage at the relay coil with a D.C. voltmeter during the microwave cooking operation.
DC. voltage indicated

Defective relay.
DC. voltage not indicated
. Check diode which is connected to the relay coil. If diode is good, control unit is defective.

RELAY SYMBOL	OPERATIONAL VOLTAGE	CONNECTED COMPONENTS
RY1	APPROX. 25.9V D.C.	Oven lamp, Blower motor and Antenna motors
RY3	APPROX. 25.0V D.C.	High voltage transformer (MG1)
RY4	APPROX. 25.0V D.C.	High voltage transformer (MG2)

CARRY OUT 4R CHECKS.

P PROCEDURES TO BE TAKEN WHEN THE FUSE ON THE PRINTED WIRING BOARD(PWB) IS OPEN

To protect the electronic circuits, this model is provided with a fine fuse added to the primary on the PWB. If the fuse is open, follow the troubleshooting guide given below for repair.

Problem: POWER ON, indicator does not light up.
CARRY OUT 3D CHECKS.

STEPS	OCCURRENCE	CAUSE OR CORRECTION
1	The rated AC voltage is not present at POWER terminal of CPU connector (CN-A).	Check supply voltage and oven power cord.
2	The rated AC voltage is present at primary side of touch control transformer.	Touch control transformer or secondary circuit defective. Check and repair.
3	Fuse on the PWB is open.	Replace the fuse with new one. (CARRY OUT 3D CHECKS BEFORE REPAIR)

NOTE: *At the time of these repairs, make a visual inspection of the varistor for burning damage and examine the transformer with tester for the presence of layer short-circuit (check primary coil resistance). If any abnormal condition is detected, replace the defective parts.

CARRY OUT 4R CHECKS.

TOUCH CONTROL PANEL ASSEMBLY

OUTLINE OF TOUCH CONTROL PANEL

The touch control section consists of the following units as shown in the touch control panel circuit.
(1) Control Unit
(2) Key Unit

The principal functions of these units and the signals communicated among them are explained below.

1. Control Unit

Signal of key touch and oven function control are all processed by one microcomputer.

1) Power Supply Circuit

This circuit changes output voltage at the secondary side of the touch control transformer to voltages required at each part by full wave rectifying circuit, constant voltage circuit, etc..

2) Reset Circuit

This is an Auto-clear Circuit, i.e., a reset circuit, which enables IC1 to be activated from initial state.
3) Power Synchronizing Signal Generating Circuit

This is a circuit for generating power synchronizing signal by virtue of the secondary side output of touch control transformer.
This signal is used for a basic frequency to time processing and so on.
4) Clock Circuit

This is a circuit for controlling clock frequency required for operating l-1.
5) l-1 (Main Processor)

This is a one-chip microcomputer, responsible for controlling the entire control unit.
6) I-2 (Memory Processor)

This is a memory IC, responsible for memory function.
7) Display Circuit

This is a circuit for driving display tubes by l-1 output.
8) Key Input Circuit

This is a circuit for transmitting key input information to l-1.
9) Sound-body Driving Circuit

This is a circuit for driving sound body by l-1 output.
10) Relay Driving Circuit

This is a circuit for driving output relay by I-1 output.
11) Stop Switch Circuit

This is a circuit for driving $\mathrm{I}-1$ to detect door opening/ closing.
12) Exhaust Air Temperature Detecting Circuit

This is a circuit for transmitting output change of thermistor (Exhaust thermistor) to $\mathrm{I}-1$.
13) Magnetron Temperature Circuit.
(Detect Noload or Fan Lock)
This is a circuit for transmitting output change of thermistor (Magnetron thermistor) to I-1.
2. Key Unit

The key unit is composed of a matrix circuit in which when a key it touched, one of signals P33-P34 generated by the LSI, is passed through the key and returned to the LSI as one of signals P24-P27. This model has 20 Memory pads. When the oven is shipped, Memory pad 1 to 10 are set as follows: fig. 1 .

Memory No.	Cook Time	Output Power
1	5 sec.	100%
2	10 sec.	100%
3	20 sec.	100%
4	30 sec.	100%
5	40 sec.	100%
6	50 sec.	100%
7	1 min.	100%
8	1 min. 15 sec.	100%
9	1 min. 30 sec.	100%
0	2 mins.	100%

(fig. 1)
This model has a double quantity pad. When the oven is shipped, Magnification "1.8" is preset in the double quantity pad. This model has an defrost pad. When the oven is shipped, defrost is set as follows: fig. 2.

	1STAGE	2STAGE	3STAGE
POWER	40%	30%	10%
DEFROSTING TIME	0.2 Tsec.	$0.3 \mathrm{~T}-20 \mathrm{sec}$.	$0.5 \mathrm{~T}+20 \mathrm{sec}$.

(fig. 2)
NOTE:
"CHECK" indicator will flash at half of defrosting time.

DESCRIPTION OF LSI

LSI(IXA222DR)

The I/O signal of the LSI(IXA222DR) is detailed in the following table.

Pin No.	Signal	I/O	Description
19	P47	OUT	Signal to sound buzzer. This signal is to control the 2.5 kHz continuous signal. A: Switch touch sound. B: Guidance sound. C: Completion sound.
20-21	P46-P45	-	Terminal not used.
22	P44	OUT	Oven lamp, Blower motor and Antenna motor driving signal (Square Waveform $: 50 \mathrm{~Hz}$). To turn on and off the shut-off relay (RY1). The Square waveform voltage is delivered to the RY1 relay driving circuit and relays (RY3, RY4, COOK RELAY) control circuit.
23-24	P43-P42	-	Terminal not used.
25	INT1	IN	Signal synchronized with commercial power source frequency. This is basic timing for all time processing of LSI.
26	INT0	IN	Connected to VC(-5) through pull-down resistor.
27	RESET	IN	Auto clear terminal. Signal is input to reset the LSI to the initial state when power is supplied. Temporarily set to "L" level the moment power is supplied, at this time the LSI is reset. Thereafter set at " H " level.
28	P71	OUT	Memory (EEPROM) clock output.
29	P70	IN/OUT	Memory (EEPROM) data input/output.
30	XIN	IN	Internal clock oscillation frequency setting input. The internal clock frequency is set by inserting the ceramic filter oscillation circuit with respect to XOUT terminal.
31	XOUT	OUT	Internal clock oscillation frequency control output. Output to control oscillation input of XIN.
32	VSS	IN	Power source voltage: -5V. VC voltage of power source circuit input.
33	P27	IN	Signal coming from touch key. When either one of G-12 line keys on key matrix is touched, a corresponding signal out of P30-P34 will be input into P27. When no key is touched, the signal is held at "L" level.
34	P26	IN	Signal similar to P27. When either one of G-11 line keys on key matrix is touched, a corresponding signal will be input into P26.
35	P25	IN	Signal similar to P27. When either one of G-10 line keys on key matrix is touched, a corresponding signal will be input into P25.
36	P24	IN	Signal similar to P27. When either one of G-9 line keys on key matrix is touched, a corresponding signal will be input into P24.
37-40	P23-P20	OUT	Segment data signal. The relation between signals and indicators are as follows:

Pin No.	Signal	I/O	Description			
			$\mathrm{B}(50 \mathrm{~Hz})$			
41-46	P17-P12	OUT	Segment data signal.			
			Signal similar to P23..			
47-48	P11-P10	OUT	Digit selection signal. The relation between digit signal and digit are as follows: Normally, one pulse is output in every B period, and input to the grid of the Fluorescent Display.			
49-52	P07-P04	OUT	Digit selection signal. Signal similar to P11.			
53-55	P03-P01	OUT	Segment data signal. Signal similar to P23.			
56	P00	-	Terminal not used.			
57-58	P37-P36	OUT	(Sound) Voltage level control terminal. This terminal (P37) is to control volume level of buzzer sound with terminals P36. Since the volume level of buzzer sound depends on voltage energized, it is control level in 3 steps by combining signal levels for P37 and P36. Relationship of signal level combination to sound volume level is shown in the following table, 1~3 in the table, however, are indicated in the descending order from the maximum level of sound volume through the minimum level. *At Output terminal P47, rectangular wave signal of 2.5 kHz is output.			
59	P35	-	Terminal not used.			
60	P34	OUT	Key strobe signal. Signal applied to touch-key section. A pulse signal is input to P24-P27 terminal while one of G-4 line keys on key matrix is touched.			
61	P33	OUT	Key strobe signal. Signal applied to touch-key section. A pulse signal is input to P24 - P27 terminal while one of G-5 line keys on key matrix is touched.			
62	P32	OUT	Key strobe signal. Signal applied to touch-key section. A pulse signal is input to P24-P27 terminal while one of G-6 line keys on key matrix is touched.			
63	P31	OUT	Key strobe signal. Signal applied to touch-key section. A pulse signal is input to P24-P27 terminal while one of G-7 line keys on key matrix is touched.			
64	P30	OUT	Key strobe signal. Signal applied to touch-key section. A pulse signal is input to P24-P27 terminal while one of G-8 line keys on key matrix is touched.			

2-2 Memory IC (I-2)

CAT24WC16P1 is a 4K-bit, serial memory, enabling CMOS to be erased/written electrically. This memory is constructed with 512 registers $\times 8$ bits, enabling individual access, read and write operations to be performed. Details of input/output signal for IC2 are as shown in the following diagram.

Figure T-2. Relation between Pin Nos, and Signals

Pin No.	Signal	I/O	Description
$1-3$	AO-A2	IN	Connected to GND.
4	VSS	IN	Connected to VC(-5V).
5	SDA	IN/OUT	Serial data input/output : input/outputs data to I-1.
6	SCL	IN	Clock signal input : input/outputs serial data at every one pulse.
7	TEST	IN	Connected to VC(-5V).
8	VCC	IN	Connected to GND.

SERVICING

1. Precautions for Handling Electronic Components This unit uses CMOS LSI in the integral part of the circuits. When handling these parts, the following precautions should be strictly followed. CMOS LSI have extremely high impedance at its input and output terminals. For this reason, it is easily influenced by the surrounding high voltage power source, static electricity charge in clothes, etc, and sometimes it is not fully protected by the built-in protection circuit.
In order to protect CMOS LSI.
1) When storing and transporting, thoroughly wrap them in aluminium foil. Also wrap all PW boards containing them in aluminium foil.
2) When soldering, ground the technician as shown in the figure and use grounded soldering iron and work table.

2. Shapes of Electronic Components

Transistor 2SB953

Transistor 2SB1238
3. Servicing of Touch Control Panel

We describe the procedures to permit servicing of the touch control panel of the microwave oven and the precautions you must take when doing so. To perform the servicing, power to the touch control panel is available either from the power line of the oven itself or from an external power source.
(1) Servicing the touch control panel with power supply of the oven:

CAUTION: THE HIGH VOLTAGE TRANSFORMER OF THE MICROWAVE OVEN IS STILL LIVE DURING SERVICING PRESENTS A HAZARD.

Therefore, when checking the performance of the touch control panel, put the outer cabinet on the oven to avoid touching the high voltage transformer, or unplug the primary terminal (connector) of the high voltage transformer to turn it off; the end of such connector must be insulated with an insulating tape. After servicing, be sure to replace the leads to their original locations.
A. On some models, the power supply cord between the touch control panel and the oven itself is so short that the two can't be separated. For those models, check and repair all the controls (sensor-related ones included) of the touch control panel while keeping it connected to the oven.
B. On some models, the power supply cord between the touch control panel and the oven proper is long enough that they may be separated from each other. For those models, therefore, it is possible to check and repair the controls of the touch control panel while keeping it apart from the oven proper; in this case you must short
both ends of the door sensing switch (on PWB) of the touch control panel with a jumper, which brings about an operational state that is equivalent to the oven door being closed. As for the sensor-related controls of the touch control panel, checking them is possible if dummy resistor(s) with resistance equal to that of the controls are used.
(2) Servicing the touch control panel with power supply from an external power source:
Disconnect the touch control panel completely from the oven proper,and short both ends of the door sensing switch (on PWB) of the touch control panel, which brings about an operational state that is equivalent to the oven door being closed. Connect an external power source to the power input terminal of the touch control panel, then it is possible to check and repair the controls of the touch control panel it is also possible to check the sensor-related controls of the touch control panel by using the dummy resistor(s).

4. Servicing Tools

Tools required to service the touch control panel assembly.

1) Soldering iron: 30 W
(It is recommended to use a soldering iron with a grounding terminal.)
2) Oscilloscope: Single beam, frequency range: DC10 MHz type or more advanced model.
3) Others: Hand tools
5. Other Precautions
1) Before turning on the power source of the control unit, remove the aluminium foil applied for preventing static electricity.
2) Connect the connector of the key unit to the control unit being sure that the lead wires are not twisted.
3) After aluminium foil is removed, be careful that abnormal voltage due to static electricity etc. is not applied to the input or output terminals.
4) Attach connectors, electrolytic capacitors, etc. to PWB, making sure that all connections are tight.
5) Be sure to use specified components where high precision is required.

PROCEDURE FOR CHECKING/CLEARING SERVICE COUNTS OF MICROWAVE OVEN

The following procedure enables the servicer to obtain the total service counts (cook cycles) for memory cooking, manual, repeat, double quantity cooking and defrost. The maximum capacity of the counter is 999,999 counts, above which the counter will reset to " 0 ". The counter will retain the total counts (will not clear) in the event of a power disruption.

1) Practice for checking total service counts (eg; 234,567 Counts).

PAD	DISPLAY	INDICATOR	LED	PHONE
(door close)	-			
	-			
CHECK	NUMBER •	CHECK		\bigcirc
CHECK	\#18268 (user total count)	CHECK		\bigcirc
$\begin{array}{\|c\|} \hline \text { \#2 } \\ \Gamma \text { VOLUME } \\ \text { VOLUME } \\ \text { DOUBLE } \\ \text { QUANTITY } \end{array}$				\bigcirc
1				\bigcirc
	(after 1 sec .)			
	45 (filter used time)			
2				\bigcirc
	200 (filter lim. time)			
0 (No 10)				\bigcirc
	35432 (service total cook time)	\downarrow		
CHECK	-			\bigcirc

\#1: Denotes total service counts within the reach of user, of which checking and clearing practices are described in this instruction manual.
\#2: Denotes the procedure for the servicer to disable checking/clearing. This procedure is instructed to service personnel only and is excluded from the operation manual.
2) Practice for clearing Service's counts

$$
": \text { Flicker } /^{\circ}: 0.1 \mathrm{sec} \text { BUZZER }
$$

$\left.\begin{array}{|c|r|c|}\hline \text { PAD ORDER } & \text { DISPLAY } & \text { PHONE } \\ \hline \text { (Door close) } & \bullet & \\ \hline \text { CHECK } & \text { "NUMBER" } \bullet & \text { CHECK }\end{array}\right] 0$
\#1: Denotes the procedure for the servicer to disable clearing. This procedure is instructed to service personnel only and is excluded from the operation manual.

PROCEDURE FOR ENTERING TO I-2

When the control unit or I-2 is exchanged, re-enter the constants of EXPRESS DEFROST, the memory information and the EEPROM data, referring to the following procedures. If not so, the oven will not operate correctly.

1) How to enter the contents of DEFROST

$$
\begin{aligned}
& \text { Constants } \\
& \text { of EXPRESS } \\
& \text { DEFROST }
\end{aligned} \quad\left[\begin{array}{l}
\text { T=STG1 + STG2 }+ \text { STG3 } \\
\text { STG }=\text { A } \times \mathrm{T}+\mathrm{B} \\
\text { STG1 }=0.20 \times \mathrm{T}
\end{array} \quad \text { Power level } 40 \%\right.
$$

Suppose above constants are entered.

PAD ORDER	DISPLAY	PHONE
(Door close)	-	
SET	-	
$\begin{gathered} \text { SET } \\ \text { (within } 2 \text { sec.) } \end{gathered}$	"NUMBER" •	0
\#1 START	"NUMBER" •	
EXPRESS DEFROST	1 0.00 DEF	\bigcirc
2,0	$\begin{equation*} 1 \quad 0.20 \mathrm{DEF} \tag{A} \end{equation*}$	- $\times 2$
MANUAL/ REPEAT	10 DEF	\bigcirc
MICROWAVE POWER SETTING	DEF "POWER" 1 0 100%	\bigcirc
4	DEF POWER 1 0 40%	\bigcirc
MANUAL/ REPEAT	20.00 DEF	\bigcirc
3, 0	$\begin{array}{cc} \hline 2 & 0.30 \mathrm{DEF} \\ & (\mathrm{~A}) \\ \hline \end{array}$	- $\times 2$
MANUAL/ REPEAT	20 DEF	\bigcirc
MANUAL/ REPEAT	$2-0$ DEF	\bigcirc
2	$\begin{array}{rr} 2 & -20 \text { DEF } \\ (+-B) \end{array}$	\bigcirc
MICROWAVE POWER SETTING	2 DEF "POWER" -20 100%	\bigcirc
3	DEF POWER 2 -20 30%	\bigcirc
MANUAL/ REPEAT	30 DEF	0
\#3 5	35 DEF	0
MICROWAVE POWER SETTING	DEF "POWER" 3 5 100%	\bigcirc
1	DEF POWER 3 5 10%	0
SET	4 •DEF	0
SET	-	\bigcirc

\#1: No key entry signal.
\#2: To set-B, touch the POWER SETTING key twice.
\#3: Ex. "CHECK" will flash and the oven will beep after 50% of DEFROST time has lapsed when 5 key is entered.
2) How to enter the memory information

Example : Suppose cooking time 5 sec . and output power 100% are entered into the memory pad 1.

PAD ORDER	DISPLAY	PHONE
(Door close)	-	
SET	-	
$\begin{gathered} \text { SET } \\ \text { (within } 2 \text { sec.) } \end{gathered}$	"NUMBER" •	\bigcirc
1	NUMBER 1 • (1)	\bigcirc
MANUAL/ REHEAT	NUMBER 1 • 0 (1)	\bigcirc
5	NUMBER $1 \cdot 5$ (1)	\bigcirc
SET	"NUMBER"	\bigcirc
SET	-	\bigcirc

Enter the memory information into the memory pads 1 ~ 10 referring to above example. The memory information are given below.

Memory No.	Cook Time	Output Power
1	5 sec.	100%
2	10 sec.	100%
3	20 sec.	100%
4	30 sec.	100%
5	40 sec.	100%
6	50 sec.	100%
7	1 min.	100%
8	1 min. 15 sec.	100%
9	1 min. 30 sec.	100%
10	2 mins.	100%
$11-20$	0 sec.	

OTHER CHECKING AND CLEARING PROCEDURE FOR

1) To check the contents of defrost.
" " : Flicker / ○ : 0.1 sec BUZZER

PAD ORDER	DISPLAY	PHONE
(Door close)	-	
CHECK	"NUMBER" • CHECK	\bigcirc
DEFROST	1 0.20 DEF CHECK (A)	\bigcirc
	DEF CHECK 0 POWER $(+-$ B) 40%	
	2 0.30 DEF CHECK (A)	
	DEF CHECK 2 -20 POWER $(+-$ B) 30%	
	DEF CHECK 3 5 POWER 10%	
	(Repeat)	
CHECK	-	\bigcirc

\#1: No key entry signal.
2) How to clear all counter(user and service) and total cooking time and used time of filter.

PAD ORDER	DISPLAY	PHONE
(Door close)	\bullet	
SET	\bullet	
SET	"NUMBER" •	\circ
DOUBLE	"NUMBER" • DOUBLE	\circ
CHECK	"NUMBER" • DOUBLE	
VOLUME	"NUMBER" • DOUBLE	
SET	\bullet	\circ

COMPONENT REPLACEMENT AND ADJUSTMENT PROCEDURE

WARNING: Avoid possible exposure to microwave energy. Please follow the instructions below before operating the oven.

1. Disconnect the oven from power supply.
2. Make sure that a definite "click" can be heard when the microwave oven door is unlatched. (Hold the door in a closed position with one hand, then grip the door handle and the door lever assembly with the other, this causes the latch leads to rise, it is then possible to hear a "click" as the door switches operate.)
3. Visually check the door and cavity face plate for damage (dents, cracks, signs of arcing etc.).

Carry out any remedial work that is necessary before operating the oven.
Do not operate the oven if any of the following conditions exist;

1. Door does not close firmly.
2. Door hinge, support or latch hook is damaged.
3. The door gasket or seal is damaged.
4. The door is bent or warped.
5. There are defective parts in the door interlock system.
6. There are defective parts in the microwave generating and transmission assembly.
7. There is visible damage to the oven.

Do not operate the oven:

1. Without the RF gasket (Magnetron).
2. If the wave guide or oven cavity are not intact.
3. If the door is not closed.
4. If the outer case (cabinet) is not fitted.

Please refer to 'OVEN PARTS, CABINET PARTS, CONTROL PANEL PARTS, DOOR PARTS', when carrying out any of the following removal procedures:

WARNING FOR WIRING

To prevent an electric shock, take the following precautions.

1. Before wiring,
1) Disconnect the power supply cord.
2) Open the door and block it open.
3) Discharge the two high voltage capacitors and wait for 60 seconds.
2. Don't let the wire leads touch to the followiong parts;
1) High voltage parts:

Magnetron, High voltage transformer, High voltage capacitor, High voltage rectifier assembly and High voltage fuse.
2) Hot parts: Oven lamp, Magnetron, High voltage transformer,
and Oven cavity.
3) Sharp edge:

Bottom plate, Oven cavity, Waveguide flange, Chassis support and other metallic plate.
4) Movable parts (to prevent a fault) Blower fan blade, Blower fan motor, Switches, Switch levers, Antenna motors and Sirrer antennas.
3. Do not catch the wire leads in the outer case cabinet.
4. Insert the positive lock connector until its pin is locked and make sure that the wire leads do not come off even if the wire leads are pulled.
5. To prevent an error function, connect the wire leads correctly, referring to the Pictorial Diagram.

OUTER CASE, REAR CABINET AND POWER SUPPLY CORD REMOVAL

To remove the components, procedure as follows.

1. Disconnect oven from power supply.
2. Open the oven door and wedge it open.
3. Remove the screws from the rear and along side the edge of the outer case.
4. Slide the case back about 1 inch $(3 \mathrm{~cm})$ to free it from the oven cavity.
5. Lift entire case from the unit.
6. DISCHARGE TWO HIGH VOLTAGE CAPACITORS BEFORE TOUCHING ANY OVEN COMPONENTS OR WIRING
7. Now, outer case is free.
N.B.; Step 1,2 and 9 form the basis of the 3D checks.

CAUTION:DISCHARGE TWO HIGH VOLTAGE CAPACITORS BEFORE TOUCHING ANY OVEN COMPONENTS OR WIRING.

To remove rear cabinet and power supply cord:
8. Disconnect the power supply cord from the noise filter.
9. Remove the one (1) screws holding the grounding wire of power supply cord to the oven cavity.
10. Remove the screws holding the rear cabinet to the oven cavity and blower motor.
11. Remove the rear cabinet with the power supply cord from the oven cavity.
12. Loosen the tab of the cord bushing, and remove the power supply cord with the cord bushing from the rear cabinet.
13. Remove the cord bushing from the power supply cord, 14.Now, the power supply cord and rear cabinet are free.

HIGH VOLTAGE TRANSFORMER(S) REMOVAL

1. CARRY OUT 3D CHECKS
2. Remove the rear cabinet, too.
3. Disconnect wire lead(s) of high voltage transformer(s)
4. Remove the wire lead(s) of high voltage transformer(s) from the wire holder.
5. Pull out the wire lead(s) of high voltage transformer(s) from the tube.
6. Disconnect wire lead(s) of high voltage transformer(s) from high voltage capacitor(s).
7. Disconnect the high voltage fuse(s) from high voltage transformer(s).

Removal

1. CARRY OUT 3D CHECKS.
2. Remove the rear cabinet, too.
3. Remove the two (2) screws holding magnetron exhaust duct to upper and lower waveguide.
4. Remove the magnetron exhaust duct from oven cavity.
5. Disconnect wire leads from magnetron(s).
6. Disconnect magnetron thermistor from the connector of the stop switch harness.
7. Remove the one (1) screw holding the thermistor angle to the upper magnetron.
8. Remove the four (4) screws holding each magnetron to
9. Disconnect the main wire harness from high voltage transformer(s).
10. Remove two (2) screws holding each power transformer to base plate.
10.Remove the high voltage transformer(s) from base plate.
12.Now, high voltage transformer(s) are free.

MAGNETRON(S) REMOVAL

MAGNETRON THERMISTOR REPLACEMENT

Removal

1. CARRY OUT 3D CHECKS.
2. Remove the rear cabinet, too.
3. Remove the magnetron from the waveguide flange, referring to "MAGNETRON(S) REMOVAL".
4. Now, the magnetron with the magnetron thermistor should be free.
5. Remove the thermistor angle from the magnetron by pulling out.
6. Straighten the tab of the magnetron thermistor angle holding the magnetron thermistor.
7. Remove the magnetron thermistor from the thermistor angle.
8. Now, the magnetron thermistor is free.

Re-install

1. Install the magnetron thermistor to the thermistor angle as shown in Figure C-1.
2. Hold the magnetron thermistor to the thermistor angle by bending the tab of the thermistor angle.
3. Insert the thermistor angle between the $2 n d$. fin and 3rd. fin from the upper fin of the magnetron and push it until the thermistor angle stops.
NOTE: The magnetron thermistor should be between the upper fin and the 2nd. fin.
4. Re-install the magnetron to the waveguide flange with four (4) screws.
5. Re-install the thermistor angle to the waveguide flange with one (1) screw.
6. Re-install the magnetron exhaust duct to the upper and lower waveguide flanges with two (2) screws.
7. Route the thermistor harness under the magnetron temperature fuse.
8. Connect the thermistor harness to the stop switch harness.
9. Connect the wire leads to the upper magnetron, referring to the pictorial diagram.
10.Re-install the power supply cord, rear cabinet and outer case cabinet to the oven by reversing the procedures of "OUTER CASE, REAR CABINET AND POWER SUPPLY CORD REMOVAL".

Figure C-1. Magnetron thermistor installation

HIGH VOLTAGE CAPACITOR, HIGH VOLTAGE FUSE AND HIGH VOLTAGE RECTIFIER ASSEMBLY REMOVAL

1. CARRY OUT 3D CHECKS.
2. Remove the rear cabinet, too.
3. Remove two (2) screws holding earth side terminals of high voltage rectifier assembly to the capacitor holder and oven cavity.
4. Disconnect all wire leads from the high voltage capacitor.
5. Disconnect high voltage fuse(s) from the high voltage transformer(s). Now, high voltage fuse(s) is(are) free.
6. Remove the three (3) screws holding the blower motor to the top of oven cavity, the chassis support and air duct.
7. Disconnect high voltage wire lead(s) of the high voltage rectifier assembly from the magnetron(s). Now, the the high voltage rectifier assembly is free.
8. Remove two (2) screws holding the capacitor holder to oven cavity.
Now, the capacitors are free.

CAUTION:

1. DISCHARGE THE TWO HIGH VOLTAGE CAPACITORS BEFORE TOUCHING ANY OVEN COMPONENTS OR WIRING.
2. DO NOT REPLACE ONLY THE HIGH VOLTAGE RECTIFIER. IF IT IS DEFECTIVE, REPLACE THE

HIGH VOLTAGE RECTIFIER ASSEMBLY.
3. WHEN REPLACING THE HIGH VOLTAGE RECTIFIER ASSEMBLY AND THE HIGH VOLTAGE CAPACITOR, THE CATHODE (EARTH) SIDE TERMINAL OF THE HIGH VOLTAGE RECTIFIER MUST BE SECURED FIRMLY WITH A EARTHING SCREW.

BLOWER MOTOR REMOVAL

1. CARRY OUT 3D CHECKS.
2. Remove the rear cabinet, too.
3. Disconnect the wire leads from the blower motor and noise filter.
4. Remove the one (1) screw holding the blower motor angle to the oven cavity.
5. Remove the one (1) screw holding the blower motor angle to the chassis support.
6. Remove the one (1) screw holding the air duct to the blower motor.
7. Remove the four (4) screws holding the blower motor angle to the blower motor.
8. Now, the blower motor is free.

STIRRER MOTORS (UPPER AND LOWER) REMOVAL

UPPER

1. CARRY OUT 3D CHECKS.
2. Disconnect the wire leads from the stirrer motor (upper).
3. Remove the one (1) screw holding the stirrer motor (upper) to the oven cavity.
4. Turn and lift up the stirrer motor (upper).
5. Now, the stirrer motor (upper) is free.

LOWER

1. Disconnect oven from the power supply.
2. Remove the stirrer motor cover by snipping off the
material in four portions.
3. Where the portions have been snipped off bend the portions flat. No sharp edge must be evident after removal of the stirrer motor cover.
4. Disconnect the wire leads from the stirrer motor (lower).
5. Remove the one (1) screw holding the stirrer motor (Lower) to the oven cavity.
6. Now, the stirrer motor (lower) is free.
7. After replacement use one (1) screw to fit the stirrer motor cover. (This screw has been fitted to the base plate near the stirrer motor cover beforehand.)

HOW TO RELEASE THE POSITIVE LOCK ${ }^{\circledR}$ CONNECTOR.

Procedure

1. CARRY OUT 3D CHECKS.
2. Pushing the lever of positive lock ${ }^{\circledR}$ connector, pull down the connector from the terminal.
3. Now, the connector is free.

CAUTION: WHEN CONNECTING THE POSITIVE LOCK ${ }^{\circledR}$ CONNECTORS TO THE TERMINALS, CONNECT THE POSITIVE LOCK ${ }^{\circledR}$ CONNECTOR SO THAT THE LEVER FACES YOU.

Figure C-2. How to release the positive lock connector.

OVEN LAMP AND LAMP SOCKET REMOVAL

1. CARRY OUT 3D CHECKS.
2. Remove the oven lamp.
3. Pull the wire leads from the oven lamp socket by pushing the terminal hole of the oven lamp socket with the small flat type screw driver
4. Lift up the oven lamp socket
5. Now, the oven lamp socket is free.

Figure C-3. Oven lamp socket

TERMINAL INSULATOR REPLACEMENT

1. Open covers of the terminal insulator by using small flat type screw driver.
2. Remove the receptacle from the terminal insulator.
3. Now, the terminal insulator is free.

Installation

1. Insert the receptacle into terminal insulator.

2. Close covers of the terminal insulator, as shown illustlated below.

CONTROL PANEL ASSEMBLY AND CONTROL UNIT REMOVAL

CONTROL PANEL ASSEMBLY REMOVAL

The complete control panel should be removed for replacement of components. To remove the control panel, proceed as follows:

1. Disconnect the oven from power supply.
2. Wait for 60 seconds to discharge the high voltage capacitor.
3. Remove the air intake filter assembly from the base plate.
4. Remove two (2) screws holding the control panel to the base plate.
5. Pull down the control panel and remove it forward.
6. Disconnect connectors and wire leads from the control unit.
7. Now the control panel assembly is free.

CAUTION FOR TOUCH CONTROL PANEL REMOVAL

1) Hold the lower end (Position A, Fig. 1) of the touch control panel assembly firmly while sliding it down and toward you.
2) If the Touch Control Panel is hard to remove;
(1) Insert a flat head screw driver into space B. (Fig. 1)
(2) Rotate the screwdriver clockwise while holding position C of the Touch Control Panel. (Fig. 2)
TO AVOID DAMAGE TO TOUCH CONTROL PANEL, COVER THE TIP OF SCREWDRIVER WITH TAPE.

Replacement of individual component is as follows:

CONTROL UNIT AND CONTROL PANEL FRAME (WITH KEY)

8. Remove three (3) screws holding the control panel mounting angle to the panel frame.
9. Lift up the control panel mounting angle from the panel frame.
10.Disconnect connector (G) from the control unit by pushing the hooks of cable holder inwardly.
11.Remove four (4) screws holding the control unit to the panel frame assembly.
10. Now, the control unit and control panel frame (with key) are free.
CAUTION:
At installing control panel unit assembly to main body set:
11. Ensure the installation of wiring-related parts without negligence.
12. When inserting key cable to main body set, ensure them free from caught-in trouble. In addition, when installing the control panel assembly to base plate with screws, be sure of pushing the control panel unit upward to fix with screws firmly.
13. Do not allow any wire leads to come near the varistor works, because it will explode and the wire leads near by the varistor will be damaged.

HOW TO ATTACH MEMBRANE SWITCH AND GRAPHIC SHEET

1. Before attaching a new membrane switch and graphic sheet, remove remaining adhesive on the control panel frame surfaces completely with a soft cloth soaked in alcohol.
2. Attach the graphic sheet to the membrane switch, with adjusting their upper edges and right edges. (This assembly part is called key unit in the following.)
NOTE : When attaching the graphic sheet, make sure that air does not come between the membrane switch and the graphic sheet.
3. Then, adjust the upper edge and right edge of the key unit to the lower edge of the display window and the right flange of the control panel frame.
4. Stick the key unit firmly to the control panel frame by rubbing with soft cloth to prevent scratching.

POWER SUPPLY CORD REPLACEMENT

1. CARRY OUT 3D CHECKS
2. Release the cord bushing from the rear cabinet.
3. Disconnect the brown and blue wires of the power
supply cord from the noise filter.
4. Remove the single (1) screw holding the earth wire of power supply cord.
5. Remove the power supply cord.

Re-install

1. Insert the power supply cord into the cord bushing.
2. Connect the brown and blue wires of power supply cord into the terminals of noise filter, referring to pictorial diagram.
3. Install the green/yellow wire of power supply cord with the one (1) screw.
4. Re-install the cord bushing to the rear cabinet.
5. CARRY OUT 4R CHECKS.

Figure C-4. Power supply cord replacement

INTERLOCK SWITCHES, MONITOR SWITCHES, AND STOP SWITCH REMOVAL

1. CARRY OUT 3D CHECKS.
2. Remove the control panel from the oven cavity referring to "CONTROL PANEL REMOVAL".
3. Remove the two (2) screws holding the latch hook to the oven cavity.
4. Open the door and pull the latch hook out of the oven cavity.
5. For stop switch removal

5-1. Disconnect the wire leads from the switch.
$5-2$. Push the retaining tabs outward slightly and then pull the switch forwards and remove it from the latch hook.
6. For interlock or monitor switches removal

6 -1. Disconnect the wire leads from the interlock or monitor switches.
6-2. Remove the single (1) screw and nut holding the interlock or monitor switches to the latch hook.
CAUTION: IF THE LATCH HOOK IS NEW, WHEN THE INTERLOCK SWITCHES OR MONITOR SWITCHES ARE INSTALLED, THE TWO (2) TABS OF THE LATCH HOOK SHOULD BE BROKEN.

INTERLOCK SWITCHES, MONITOR SWITCHES, AND STOP SWITCH ADJUSTMENT

In case interlock switches, stop switch and monitor switches do not operate properly due to a mis-adjustment, the following adjustment should be made.

1. Loosen the two (2) screws holding the latch hook.
2. With the door closed, adjust the latch hook by moving it back and forward, or up and down. In and out play of the door allowed by the latch hook should be less than 0.5 mm . The vertical position of the latch hook should be placed where the stop switch and interlock switches have activated with the door closed.
The horizontal position of the latch hook should be placed where the monitor switches have activated with the door closed.
3. Secure the screws with washers firmly.
4. Make sure of the interlock switches, stop switch, and monitor switches operation. If those switches have not activated with the door closed, loose two (2) screws holding latch hook and adjust the latch hook position.

After adjustment, make sure of the following:

1. In and out play of door remains less than 0.5 mm when in the latched position.
2. The stop switch and interlock switches interrupt the circuit before the door open when the door release lever is pulled, and then and monitor switch close the circuit when the door is opened.
3. Re-install outer case and check for microwave leakage
around the door with an approved microwave survey meter. (Refer to Microwave Measurement Procedure.)

Figure C-5 Latch Switch Adjustments

DOOR REPLACEMENT AND ADJUSTMENT

REMOVAL

1. CARRY OUT 3D CHECKS.
2. Remove the two (2) screws holding each of the upper and lower oven hinges to the oven cavity.
3. Remove door assembly with upper and lower oven hinges by pulling it forward.
4. Release upper and lower oven hinges from door assembly.
5. Now, door assembly is free.

NOTE: When individual parts are replaced, refer to "Door Disassembly".

RE-INSTALL

1. Insert the upper and lower oven hinges into door hinge pins.
2. Insert the upper and lower oven hinges with door assembly into rectangular holes of oven cavity front plate.
3. Make sure that the door is parallel with oven face lines (left and upper side line) and door latch heads pass through the latch holes correctly.
4. Fasten upper and lower oven hinges firmly to oven cavity with two (2) screws on each hinge.

Note: After any service to the door;

(A) Make sure that interlock switches, stop switch and monitor switches are operating properly. (Refer to chapter "Test Procedures".).
(B) An approved microwave survey meter should be used to assure compliance with proper microwave radiation emission limitation standards.

DOOR ADJUSTMENT

When removing and/or loosening hinges such as in door replacement, the following adjustment criteria are taken. Door adjustment is performed with the door properly installed and closed and while the oven hinges are loose.

1. Loosen upper and lower oven hinges with phillips head screw driver.
2. Adjust the door by moving it vertically so that the top right hand corner of the door is in line with the top of the control panel frame assembly.
3. Tighten the upper and lower oven hinge screws.

After adjustment, make sure of the following:

1. Door latch heads smoothly catch the latch hook through the latch holes, and the latch head goes through the center of the latch hole.
2. Deviation of the door alianment from horizontal line of cavity iace prate is to ve iess mail i.umin.
3. The door is positioned with its face depressed toward the cavity face plate.
4. Re-install outer case and check for microwave leakage around door with an approved microwave survey meter. (Refer to Microwave Measurement Procedure.)
Note: The door on a microwave oven is designed to act as an electronic seal preventing the leakage of microwave energy from oven cavity during cook cycle. This function does not require that door be air-tight, moisture (condensation)-tight or lighttight. Therefore, occasional appearance of moisture, light or sensing of gentle warm air movement around oven door is not abnormal and do not of themselves, indicate a leakage of microwave energy from oven cavity. If such were the case, your oven could not be equipped with a vent, the very purpose of which is to exhaust the vapor-laden air from the oven cavity.

Figure C-6. Door Replacement

DOOR DISASSEMBLY

CHOKE COVER REMOVAL

1. Open the door and insert a putty knife (thickness of about 0.5 mm) in gap between the choke cover and corner portion of door panel to free engaging parts. Refer to Fig. C-7.
NOTE: As the choke cover and door panel are engage at 16 places, do not force any perticular part.
2. Remove the choke cover carefully. (If choke cover is broken, replace with a new one.)

Figure C-7. Choke cover

DOOR COMPONENTS REMOVAL

UPPER AND LOWER OVEN HINGES REMOVAL

1. Remove the door assembly from oven cavity, referring to "REMOVAL" of "DOOR REPLACEMENT AND ADJUSTMENT".
2. Remove choke cover, referring to "CHOKE COVER REMOVAL".
3. Release the oven hinges from the door panel.
4. Now, the oven hinges are free.

DOOR HANDLE REMOVAL

1. Remove the door assembly from oven cavity, "REMOVAL" of "DOOR REPLACEMENT AND ADJUSTMENT".
2. Place door assembly on a soft cloth with latches facing up.
3. Remove choke cover from door panel, referring to "CHOKE COVER REMOVAL".
4. Remove two (2) screws holding the door handle to door.
5. Remove the door handle from door panel.
6. Now, door handle is free.

UPPER AND LOWER LATCH HEADS REMOVAL

7. Remove the door release lever from the door assembly.
8. Remove the three (3) screws holding the joint plate to the door panel.
9. Release the latch spring from the tab of the joint lever and joint plate.
10. Release the latch heads from joint lever and joint plate.
11.Now, the latch heads are free.

DOOR CASE REMOVAL

1. Remove the door assembly from oven cavity, referring
to "REMOVAL" of "DOOR REPLACEMENT AND ADJUSTMENT".
2. Remove choke cover from door panel, referring to "CHOKE COVER REMOVAL".
3. Remove door handle from door panel, referring to "DOOR HANDLE REMOVAL".
4. Bend up four (4) nails of door case.
5. Remove door case from door panel.
6. Now, the door case is free.

DOOR GLASS REMOVAL

7. Remove the four (4) screws holding two (2) outside window fixing plates to door panel.
8. Now, the door glass is free.

SERVICE INFORMATION

IMPORTANT: When the magnetron MG1 and/or MG2 is replacing, the relays (RY3 and RY4) on control unit must be replaced at the same time. Because if the magnetron's life has been over, the relay's life may also be over.

MICROWAVE MEASUREMENT

After adjustment of door latch switches, monitor switch and door are completed individually or collectively, the following leakage test must be performed with a survey instrument and it must be confirmed that the result meets the requirements of the performance standard for microwave oven.

REQUIREMENT

The safety switch must prevent microwave radiation emission in excess of $5 \mathrm{~mW} / \mathrm{cm}^{2}$ at any point 5 cm or more from external surface of the oven.

PREPARATION FOR TESTING:

Before beginning the actual test for leakage, proceed as follows;

1. Make sure that the test instrument is operating normally as specified in its instruction booklet.
Important:
Survey instruments that comply with the requirement for instrumentations as prescribed by the performance standard for microwave ovens must be used for testing.

Recommended instruments are:
NARDA 8100
NARDA 8200
HOLADAY HI 1500
SIMPSON 380M
2. Place the oven tray into the oven cavity.
3. Place the load of $275 \pm 15 \mathrm{ml}$ of water initially at 20 $\pm 5^{\circ} \mathrm{C}$ in the centre of the oven tray. The water container should be a low form of 600 ml beaker with inside diameter of approx. 8.5 cm and made of an electrically non-conductive material such as glass or plastic.
The placing of this standard load in the oven is important not only to protect the oven, but also to insure that any leakage is measured accurately.
4. Close the door and turn the oven ON with the timer set for several minutes. If the water begins to boil before the survey is completed, replace it with 275 ml of cool water.
5. Move the probe slowly (not faster that $2.5 \mathrm{~cm} / \mathrm{sec}$.) along the gap.
6. The microwave radiation emission should be measured at any point of 5 cm or more from the external surface of the oven.

Microwave leakage measurement at $\mathbf{5 c m}$ distance

TEST DATA AT A GLANCE

Parts	Symbol	Value / Data
Fuse	F1	F10A
Fuse	F2	F10A
Weak point	F3	A017
High voltage fuse	F4, F5	0.75 A 5 kV
Temperature fuse (Upper Mag.)	TF1	$150^{\circ} \mathrm{C}$
Temperature fuse (Lower Mag.)	TF2	$150^{\circ} \mathrm{C}$
Temperature fuse(Exhaust)	TF3	$120^{\circ} \mathrm{C}$
Magnetron thermistor (Upper)	TH1	Approx. $500 \mathrm{k} \Omega-1 \mathrm{M} \Omega$ at the room temperature
Magnetron thermistor (Lower)	TH2	Approx. $500 \mathrm{k} \Omega-1 \mathrm{M} \Omega$ at the room temperature
Exhaust thermistor	TH3	Approx. $500 \mathrm{k} \Omega-1 \mathrm{M} \Omega$ at the room temperature
Oven lamp	OL	250 V 25 W
High voltage capacitor	C 1	$1.07 \mu \mathrm{~F}$ AC 2300 V
High voltage capacitor	C2	$1.07 \mu \mathrm{~F}$ AC 2300 V
High voltage transformer	T1, T2	Filament winding $<1 \Omega$ Secondary winding Approx. 75Ω Primary winding Approx. 1.2Ω
Magnetron		MG1
Filament winding $<1 \Omega$		
Magnetron	MG2	Filament winding - chassis $\infty \Omega$ Filament winding $<1 \Omega$

WARNING: DISCONNECT THE PLUG WHEN MEASURING RESISTANCE.

Figure 0-1 Oven Schematic-OFF Condition

Figure O-2 Oven Schematic-IDLE Condition (Door opened condition)

NOTE: CONDITION OF OVEN

1. DOOR CLOSED
2. MANUAL/ REPEAT KEY TOUCHED
3. COOKING TIME PROGREMMED.
4. START PAD TOUCHED

NOTE: \star Indicates components with potential above 250 V .

Figure O-3 Oven Schematic-Cooking Condition

Figure S-4. Printed Wiring Board

PARTS LIST

Note: The parts marked " Δ " may cause undue microwave exposure. The parts marked "*" are used in voltage more than 250V.

CABINET PARTS

2-1	GDAI-A353WRTZ	Base plate	1	BB
2-2	GCABUA860WRPZ	Outer case cabinet	1	BD
2-3	GCOVAA2 83WRW0	Rear cabinet	1	AX
2-4	FFTASA0 64WRY0	Oven lamp access cover assembly	1	AN
2- 4-1	PCUSUA585WRPZ	Cushion	1	AF
2- 4-2	PREFHA059WRP0	Reflector	1	AF
2-5	FFPF-A016WRK0	Vibration-proof sheet	1	AU
2-6	PSHEGA007WRE0	Rubber sheet B	2	AE

CONTROL PANEL PARTS

3-1	DPWBFC365WRKZ	Control unit	1	BN
3-1A	QCNCMA 314DRE0	5-pin connector ($\mathrm{CN}-\mathrm{A}$)	1	AC
3-1B	QCNCMA413DRE0	$6-\mathrm{pin}$ connector ($\mathrm{CN}-\mathrm{B}$)	1	AC
3-1C	QCNCMA 420 DRE0	5-pin connector ($\mathrm{CN}-\mathrm{C}$)	1	AK
3-1D	QCNCMA493DRZZ	6-pin connector ($\mathrm{CN}-\mathrm{D}$)	1	AE
3-1E	QCNCWA030DRE0	12-pin connector (CN-G)	1	AF
3-1F	RV-KXA053DRE0	Fluorescent display tube	1	AW
3-1G	PCUSGA359WRP0	Cushion	2	AC
BZ	RALM-A014DRE0	Buzzer (PKM22EPT)	1	AG
C1	VCKYD11HF104Z	Capacitor 0.1uF 50V	1	AB
C2	VCEAG51HW228M	Capacitor 2200uF 50V	1	AH
C3	VCEAG31HW106M	Capacitor 10uF 50V	1	AB
C4	VCKYD11HF104Z	Capacitor 0.1uF 50V	1	AB
C5	VCEAG31HW10 6M	Capacitor 10uF 50V	1	AB
C6-7	VCKYD11CY103N	Capacitor 0.01uF 16V	2	AA
C8	VCEAG31CW107M	Capacitor 100uF 16V	1	AC
C9	VCEAG31HW106M	Capacitor 10uF 50V	1	AB
C10	VCKYD11HF104Z	Capacitor 0.1uF 50V	1	AB
C21	VCKYD11HF104Z	Capacitor 0.1uF 50V	1	AB
C22	VCKYD11CY103N	Capacitor 0.01uF 16V	1	AA
C30	VCKYD11CY103N	Capacitor 0.01uF 16 V	1	AA
C31	VCEAG31HW106M	Capacitor 10uF 50V	1	AB
C60	VCKYD11CY103N	Capacitor 0.01uF 16V	1	AA
C62-63	VCKYD11CY103N	Capacitor 0.01uF 16V	2	AA
C70	VCKYD11CY103N	Capacitor 0.01uF 16V	1	AA
C74	VCKYD11HF104Z	Capacitor 0.1uF 50V	1	AB
C75	VRD-B12EF472J	Resistor 4.7k ohm 1/4W	1	AA
C80	VCKYD11HF104Z	Capacitor 0.1uF 50V	1	AB
C81	VCEAG31HW106M	Capacitor 10uF 50V	1	AB
C98-101	VCKYD11HB331K	Capacitor 330pF 50V	4	AA
CF1	RCRS-A010DRE0	Ceramic seronator (CST4.00MGW)	1	AD
D1-7	VHD10EDB10+-1T	Diode (10EDB10)	7	AB
D70	VHD10EDB10+-1T	Diode (10EDB10)	1	AB
D71	VHD1SS133 / /-2	Diode (1SS133)	1	AA

REF. NO.	PART NO.	DESCRIPTION	Q'TY	CODE
D81	VHD1SS133 / / -2	Diode (1SS133)	1	AA
D83-84	VHD1SS133 / /-2	Diode (1SS133)	2	AA
F1	QFS-IA001KKZZ	Fuse 2.5A 50V	1	AD
I- 1	RH-IXA222DRZZ	LSI	1	AU
I- 2	VHICAT24W16-1	EEPROM	1	AF
Q2	VSKRA101M/ /-3	Transistor (KRA101M)	1	AB
Q3	VHIKIA79L05-3	Transistor (KIA79L05P)	1	AE
Q11	VS2SB953-PQ-4	Transistor (2SB953)	1	AG
Q20	VSKRA101M/ /-3	Transistor (KRA101M)	1	AB
Q40	VSKRA101M/ - 3	Transistor (KRA101M)	1	AB
Q41	VS2SB1238//-3	Transistor (2SB1238)	1	AA
Q80	VSKRA101M/ /-3	Transistor (KRA101M)	1	AB
Q81	VSDTD143ES / -3	Transistor (DTD143ES)	1	AC
Q86-87	VSDTB143ES / -3	Transistor (DTB143)	2	AC
R1	VRD-B12EF152J	Resistor 1.5k ohm 1/4W	1	AA
R2	VRS-B13AA271J	Resistor 270 ohm 1W	1	AA
R3	VRS-B13AA151J	Resistor 150 ohm 1W	1	AA
R5	VRD-B12EF103J	Resistor 10k ohm 1/4W	1	AA
R21	VRD-B12EF563J	Resistor 56 k ohm 1/4W	1	AA
R22	VRD-B12EF472J	Resistor 4.7k ohm 1/4W	1	AA
R30	VRD-B12EF101J	Resistor 100 ohm 1/4W	1	AA
R31	VRD-B12EF153J	Resistor 15 k ohm 1/4W	1	AA
R32	VRD-B12EF272J	Resistor 2.7k ohm 1/4W	1	AA
R33	VRD-B12EF103J	Resistor 10k ohm 1/4W	1	AA
R40	VRD-B12EF332J	Resistor 3.3k ohm 1/4W	1	AA
R41	VRD-B12EF203J	Resistor 20k ohm 1/4W	1	AA
R42	VRD-B12EF393J	Resistor 39k ohm 1/4W	1	AA
R43	VRD-B12EF103J	Resistor 10k ohm 1/4W	1	AA
R60	VRD-B12EF333J	Resistor 33 k ohm 1/4W	1	AA
R62-63	VRD-B12EF112J	Resistor 1.1k ohm 1/4W	2	AA
R64-65	VRD-B12EF472J	Resistor 4.7k ohm 1/4W	2	AA
R67	VRD-B12EF472J	Resistor 4.7k ohm 1/4W	1	AA
R70	VRD-B12EF101J	Resistor 100 ohm 1/4W	1	AA
R71	VRD-B12EF472J	Resistor 4.7k ohm 1/4W	1	AA
R90-98	VRD-B12EF472J	Resistor 4.7k ohm 1/4W	9	AA
RY1	RRLY-B004MRE0	Relay (FTR-F3AA024E)	1	AF
RY3-4	RRLY-A113DRE0	Relay (DU24D1-1PR(M))	2	AM
VRS1	VHV10V471K+-1	Varistor (TNR10V471K)	1	AD
ZD1	VHEHZ161/ / /-1	Zener diode (HZ16-1)	1	AA
ZD2	VHEHZ4C3 / / / - 1	Zener diode (HZ4C3)	1	AA
3-2	FPNLCB774WRKZ	Control panel frame with key unit assembly	1	BD
3-2-1	PSHEPA9 63WREZ	Graphic sheet	1	AS
3-2-2	QSW-KA041DRZZ	Membrane switch	1	AV
3-2-3	HDECAA195WRP0	Decoration metal fittings	1	AP
3-2-4	PCUSUA451WRP0	Cushion	1	AB
3-2-5	PCUSGA618WREZ	Cushion	1	AD
3-3	LANGTA2 43WRW0	Control panel mounting angle	1	AF
3-4	XEPSD30P10XS0	Screw : $3 \mathrm{~mm} \times 10 \mathrm{~mm}$	4	AA
3-5	XEPSD40P12000	Screw : $4 \mathrm{~mm} \times 12 \mathrm{~mm}$	2	AA
3-6	XHTSD40P08RV0	Screw : 4mmx 8mm	1	AA

OVEN PARTS

	4-1	PCLICA042WREZ	Chassis clip	4	AC
	4-2	FDUC-A345WRY0	Exhaust duct assembly	1	AP
Δ	4-3	FOVN-A444WRY0	Oven cavity	1	BS
	4-4	PFILWA053WRP0	Oven light screen (Inside)	1	AE
	4-5	MLEVPA153WRF0	Switch lever A	1	AC
	4-6	MLEVPA154WRF0	Switch lever B	1	AC
	4-7	MLEVPA155WRF0	Switch lever C	1	AC
	4-8	MSPRCA075WRE0	Switch spring A	1	AB
	4-9	MSPRCA076WRE0	Switch spring B	2	AB
Δ	4-10	PHOK-A081WRF0	Latch hook	1	AP
Δ	4-11	MHNG-A216WRM0	Lower oven hinge	1	AG
	4-12	PCUSUA626WREZ	Cushion	1	AC
	4-13	PCUSU0407WRP0	Cushion	2	AA
	4-14	FGLSPA063WRY0	Ceramic shelf	1	BF
	4-15	FPLT-A008WRY0	Stirrer antenna upper assembly	1	AV
	4-16	FPLT-A009WRY0	Stirrer antenna lower assembly	1	AV
	4-17	PCUSUA538WRPZ	Cushion	1	AD
	4-18	LANGQA370WRP0	Oven lamp mounting plate	1	AD
	4-19	LBNDKA0 68WRP0	Capacitor holder	1	AD
	4-20	PGIDHA054WRW0	Water-proof cover	1	AF
	4-21	NSFTPA031WRF0	Antenna motor shaft	2	AH
	4-22	PZETEA087WRPZ	Insulater	1	AE
	4-23	PCUSUA417WRP0	Cushion	1	AB
Δ	4-24	MHNG-A215WRM0	Upper oven hinge	1	AG
	4-25	PCUSUA413WRP0	Cushion	1	AG
	4-26	PCUSUA415WRP0	Cushion	1	AC

Note: The parts marked " Δ " may cause undue microwave exposure. The parts marked "*" are used in voltage more than 250 V .

REF. NO.	PART NO.	DESCRIPTION	Q'TY	CODE
$4-27$	PDUC-A729WRF0	Air duct	1	AL
$4-28$	PDUC-A564WRW0	Mg exhaust duct	1	AP
$4-29$	PCUSUA414WRP0	Cushion	1	AD
$4-30$	LANGKA679WRPZ	Fixing angle S	1	AD
$4-31$	HDECQA147WRM0	Corner cap right	1	AE
$4-32$	LANGFA195WRW0	Chassis support	1	AH
$4-33$	LBSHCA012WRE0	Cord bushing	1	AD
$4-34$	FCOVPA032WRKZ	Stirrer cover assembly	1	BF
$4-35$	FFIL-A005WRK0	Air intake filter assembly	1	AS
$4-36$	HDECEA001WRP0	Decoration sash	1	AR
$4-37$	HDECQA146WRM0	Corner cap left	1	AE
$4-38$	PCUSGA409WRP0	Cushion	2	AE
$4-39$	LANGQA440WRM0	Earth angle	1	AE
$4-40$	LANGQA512WRP0	Thermistor angle	2	AE
$4-41$	LANGQA593WRPZ	Blower motor angle	1	AH
$4-42$	MSPRCA101WRE0	Switch lever spring C	1	AC
$4-43$	PCUSUA268WRP0	Cushion	1	AA

DOOR PARTS

MISCELLANEOUS

6-1	TINSMA018WRRZ	Operation manual	1	AR
6-2	TLABHA029WRR0	Menu sticker	1	AC
6-3	FW-VZB999WREZ	Switch harness	1	AP
6-4	FW-VZC001WREZ	Main wire harness	1	BC
6-5	LHLDWA0 40 WRE0	Wire holder A	1	AB
6-6	LBNDKA079WRE0	Wire holder	2	AB
6-7	TCAUHA168WRR0	H caution label	1	AH
6-8	TCAUHA2 57WRR0	S caution sheet	1	AE
6-9	PZET-A018WRE0	Terminal insulator	2	AC
6-10	TLABSA0 64WRR0	A017 label	1	AC
6-11	TLABSA055WRR0	Fuse label F10A	2	AE

SCRE,NUTS AND WASHERS

7-1	LX-BZA131WREZ	Special screw	4	AB
7-2	LX-BZA138WREZ	Special screw	2	AB
7-3	XHTSD40P08RV0	Screw : 4 mm x 8mm	14	AA
7-4	XONSC40P10000	Screw : $4 \mathrm{~mm} \times 10 \mathrm{~mm}$	1	AA
7-5	XOTSC40P12000	Screw : $4 \mathrm{~mm} \times 12 \mathrm{~mm}$	5	AA
7-6	XOTWW40P08000	Screw : $4 \mathrm{~mm} \times \mathrm{x}$ mm	5	AB
7-7	LX-BZA116WRE0	Special screw	2	AD
7-8	XOTWW40P10000	Screw : $4 \mathrm{~mm} \times 10 \mathrm{~mm}$	11	AB
7-9	XOTSD40P12000	Screw : $4 \mathrm{~mm} \times 12 \mathrm{~mm}$	6	AA
7-10	LX-CZA038WRE0	Special screw	3	AA
7-11	LX-EZA004WRE0	Special screw	2	AA
7-12	LX-BZA041WRE0	Special screw	2	AA
7-13	XJPSD40P10000	Screw : 4 mm x 10 mm	2	AA
7-14	LX-EZA042WRE0	Special screw	12	AB
7-15	XOTSD40P10RV0	Screw : $4 \mathrm{~mm} \times 10 \mathrm{~mm}$	3	AA
7-16	LX-BZA064WRE0	Special screw	1	AA
7-17	LX-WZA035WRE0	Special washer	1	AB

REF. NO.	PART NO.	DESCRIPTION	Q'TY	CODE
7-18	XWSSD40-10000	Washer: $4 \mathrm{~mm} \times 1 \mathrm{~mm}$	1	AA
7-19	XFTSD40P12000	Screw : $4 \mathrm{~mm} \times 12 \mathrm{~mm}$	1	AA
7-20	LX-BZA150WREZ	Special screw	1	AB
7-21	XCHWW40P08000	Screw : $4 \mathrm{~mm} \times 8 \mathrm{~mm}$	2	AB
7-22	XCPSD30P10000	Screw : 3 mm x 10 mm	2	AA
7-23	XBPSD30P28KS0	Screw : $3 \mathrm{~mm} \times 28 \mathrm{~mm}$	2	AA
7-24	XNESD30-24000	Nut : $3 \mathrm{~mm} \times 2.4 \mathrm{~mm}$	2	AA
7-25	XCPWW30P08000	Screw : $3 \mathrm{~mm} \times 8 \mathrm{~mm}$	2	AA
7-26	LX-BZA132WRZZ	Special screw	4	AB
7-27	XOTSD40P08000	Screw : 4 mm x 8mm	4	AA

HOW TO ORDER REPLACEMENT PARTS

To have your order filled prompty and correctly, please furnish the following information.

1. MODEL NUMBER
2. REF. NO.
3. PART NO.
4. DESCRIPTION

PACKING AND ACCESSORIES

SHARP

COPYRIGHT © 2003 BY SHARP CORPORATION

ALL RIGHTS RESERVED.

No part of this publication may be reproduced, stored in retrieval systems, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

